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a b s t r a c t

The algorithm, generalized orthogonal components regression (GOCRE), is proposed to ex-
plore the relationship between a categorical outcome and a set ofmassive variables. A set of
orthogonal components are sequentially constructed to account for the variation of the cat-
egorical outcome, and together build up a generalized linear model (GLM). This algorithm
can be considered as an extension of the partial least squares (PLS) for GLMs, but overcomes
several issues of existing extensions based on iteratively reweighted least squares (IRLS).
First, existing extensions construct a different set of components at each iteration and thus
cannot provide a convergent set of components. Second, existing extensions are compu-
tationally intensive because of repetitively constructing a full set of components. Third,
although they pursue the convergence of regression coefficients, the resultant regression
coefficients may still diverge especially when building logistic regression models. GOCRE
instead sequentially builds up each orthogonal component upon convergent construction,
and simultaneously regresses against these orthogonal components to fit theGLM. The per-
formance of the new method is demonstrated by both simulation studies and a real data
example.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Available high-throughput biotechnologies havemade it possible to genotype thousands of genetic markers, meanwhile,
they bring challenges to statistical analyses of these data. Such data are characterized by a large number of variables (p) ob-
served from a relatively small number of subjects (n), and create the well-known large p small n problems. To deal with this
issue, an important strategy is to reduce the high dimensionality of the predictors before fitting models. As a supervised
dimension-reduction method, partial least squares (PLS) by Wold (1975) has drawn considerable attention, see Vinzi et al.
(2010). PLS constructs orthogonal components such that these components capture information of original predictors pre-
dicting response variables, and linear models are built on the base of these components instead of the original predictors. It
is computationally fast and able to take collinear or multicollinear predictors.

Success of PLS in fitting linear models motivates extensions to generalized linear models (GLMs). With the iteratively
reweighted least squares (IRLS) algorithm commonly used for building regular GLMs (Green, 1984), Marx (1996) proposed
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an extension, i.e., the iteratively reweighted partial least squares (IRPLS) algorithm, which replaces the least squares esti-
mates with PLS estimates at each iteration. It is a natural extension of PLS, however, a different set of orthogonal compo-
nents are constructed at each iteration and thus the convergence of original regression coefficients is pursued. As a result,
the loadings of orthogonal components never converge, and even regression coefficients especially for logistic regressions
rarely converge. A full set of distinct components at each iteration not only make it difficult to interpret, but also demand
intensive computation.

Much effort has been devoted to solving the non-convergence issue of IRPLS. Ding and Gentleman (2004) applied the bias
reduction procedure proposed by Firth (1993) to IRPLS, specifically for the classification problems. Firth (1993)modified the
score function to remove the first order term of the asymptotic bias of maximum likelihood estimators for GLMs. Heinze
and Schemper (2002) showed that this bias reduction procedure may also avoid the common infinite estimate problem of
logistic regressions. However, the non-convergence issue still exists in IRPLS by Ding and Gentleman (2004), possibly due
to varying components at each iteration. Alternatively, Fort and Lambert-Lacroix (2005) proposed to build up continuous
pseudo-responses via ridge regression and then apply PLS to regress these pseudo-responses against the predictors; Nguyen
and Rocke (2002) instead proposed to first apply PLS by treating the responses as continuous, and then fit a regular GLM
using the resultant orthogonal components instead of the original predictors.

Here we propose a different strategy, namely, the generalized orthogonal components regression (GOCRE), to extend the
supervised dimension reduction idea in PLS and fit high dimensional GLMs. While IRPLS repetitively constructs a different
set of components at each iteration and targets a convergent set of regression coefficients, GOCRE sequentially constructs
orthogonal componentswhichmaximally account for the remaining variation in the categorical outcome. Thebias correction
procedure by Firth (1993) is also applied. The proposedmethod enjoys computational privilege over IRPLS since IRPLS needs
to rebuild all orthogonal components at each iteration. The construction of orthogonal components is also different from the
methods by Fort and Lambert-Lacroix (2005) and Nguyen and Rocke (2002), both directly maximizing correlation between
categorical responses and components.

This paper is organized as follows. The next section introduces our proposed method in details. Simulation studies are
shown in Section 3, and an application of the proposed method to a real data set is presented in Section 4. We close the
paper with a brief discussion.

2. The method

2.1. High dimensional generalized linear model

Suppose the distribution of response Y is a member of the exponential family distribution,

f (y|θ) = exp

yθ − b(θ)

a(φ)
+ c(y, φ)


, (1)

where θ is the canonical parameter and φ is the known dispersion parameter. A link function g(·) further relates the mean
of response Y to the p predictors in X , i.e.,

g(E[Y |X]) = µ+ Xβ, (2)

whereµ is the intercept and β is a p-dimensional column vector containing all regression coefficients of the predictors. The
inverse function of g(·) is denoted as g−1(·).

With a size n sample {(yi, xi), i = 1, 2, . . . , n}, a common issue is how to provide a legitimate estimate of β in (2) when
p ≫ n. Denote X = (xt1, . . . , x

t
n)

t , an n × p matrix with rank rx ≤ min(n, p). The classical maximum likelihood estimators
(MLEs) of β form a space with dimension at least p − rx. Suppose an n × rx matrix XS is constructed by a subset of columns
of X, and further assume that there is a unique maximum likelihood estimator of βS for the following model,

g(E[Y |XS]) = µ+ XSβS . (3)

Correspondingly there exists a unique MLE of β , namely β̂ , in model (2), satisfying the following assumption:

Assumption 1. β̂ tψ = 0 whenever Xψ = 0n×1.

In the case that X is of rank rx, the above assumption equivalently puts p − rx constraints on MLE β̂ to make model (2)
identifiable. This assumption makes practical sense in solving the collinearity or multicollinearity issue. For example, if the
jth predictor consistently doubles the value of the k-th predictor, we have β̂j = 2β̂k. Therefore, the scale of the predictor, if
preserved, may indicate its importance. On the other hand, when the predictors are identical, the corresponding regression
coefficients will also be identical.

Due to the aforementioned multicollinearity issue, we can focus on building model (2) with β satisfying the following
assumption, a population version of Assumption 1.

Assumption 2. β tψ = 0 whenever Xψ = 0, a.s.
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