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a b s t r a c t

A tree-based algorithm for longitudinal regression analysis that aims to learn whether and
how the effects of predictor variables depend on moderating variables is presented. The
algorithm is based onmultivariate generalized linearmixedmodels and it builds piecewise
constant coefficient functions. Moreover, it is scalable for many moderators of possibly
mixed scales, integrates interactions between moderators and can handle nonlinearities.
Although the scope of the algorithm is quite general, the focus is on its usage in an ordinal
longitudinal regression setting. The potential of the algorithm is illustrated by using data
derived from the British Household Panel Study, to show how the effect of unemployment
on self-reported happiness varies across individual life circumstances.1

© 2015 Elsevier B.V. All rights reserved.

1. Introduction 1

Regression analysis for longitudinal responses addresses a wide range of applications, particularly in medical and social 2

sciences. Siddall et al. (2003), for example, analyze long-term effects of injuries on repeatedly measured pain. Likewise, 3

Oesch and Lipps (2013) use repeatedly measured well-being to examine the impact of the transition from employment to 4

unemployment. 5

When carrying out longitudinal regression analysis, researchers are specifically interested in the impact of moderator 6

variables on selected regression coefficients in order to enhance insights on the studied relation and/or to control for con- 7

founding variables. For example, the effect of an injury could depend on age, while that of unemployment could vary across 8

social groups. Herein, we propose a method to learn such moderation in longitudinal data. The method combines a mixed 9

model approach with a regression tree approach. Although the proposed method applies generally in the multivariate gen- 10

eralized linear mixed model (MGLMM) setting, we focus on its usage with longitudinal ordinally scaled responses such as 11

pain or well-being. 12

The remainder of the article is organized as follows. Sections 1.1 and 1.2 introduce the framework used in the present 13

study and related works. Section 2 explains the method in detail. Section 3 illustrates its potential by using an empirical ex- 14

ample and simulation studies and, finally, Section 4 concludes, including addressing the limitations of the proposedmethod 15

and the software implementation. 16
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1.1. Framework1

The proposed algorithm extends multivariate generalized linear mixed models (e.g. Tutz and Hennevogl, 1996) by al-2

lowing the fixed coefficients to vary as nonparameterized functions of some moderator variables Z1, . . . , ZL. Let yit denote3

the R × 1 response vector of individual i at time t, i = 1, . . . ,N, t = 1, . . . ,Ni. Denote by Xit and Wit the Q × Pβ and4

Q × Pbi design matrices associated with fixed coefficients β and (individual-specific) random coefficients bi, respectively.5

Further, denote by zit the L × 1 vector of moderators, also called effect modifiers in the literature (e.g. Hastie and Tibshi-6

rani, 1993). MGLMMs link the Q × 1 predictor vector ηit with the conditional expectation µit = E(yit |bi;Xit ,Wit , zit) via7

µit ∈ RR
→ ηit = g(µit) ∈ RQ , where g is a known link function. We aim to fit predictor functions of the form8

M : ηit = Xitβ(zit)+Witbi, bi
i.i.d.
∼ N (0,6b) . (1)9

The fixed coefficients β(·) = (β1(·), . . . , βPβ (·))
⊤ of M are varying coefficients that state that the linear effects of the ele-10

ments ofmatrixXit on the expectation of yit are nonparameterized functions of zit . In the predictor functionM, the intercept11

coefficients are included in β(·). Such varying intercepts are functions of zit and estimate the direct effects of zit on E(yit |·).12

In contrast to fixed coefficients, the individual-specific random coefficients bi do not depend on zit in M. Such random co-13

efficients are used to take into account the correlation between repeated responses and could include individual-specific14

intercepts or slopes over time. As stated in (Eq. (1)), we assume here that the random coefficients are normally, identically15

and independently distributed with E(bi) = 0 and Var(bi) = 6b.16

MGLMMs include models with density functions of the multivariate exponential family that, with random coefficients17

bi, have the general form18

f (yit |bi;β, φ) = exp

y⊤it θit − b(θit)

φ
+ c(yit , φ)


, (2)19

with φ the dispersion parameter and b(·) and c(·) family-specific functions. θit is the so-called vector of natural parameters.20

It is here defined as θit = d(µit) = d(g−1(Xitβ(zit)+Witbi)), with d(·) a known, vector-valued function. MGLMMs include,21

for instance, several univariate models such as the (Gaussian) linear mixed model or the Poisson mixed model. Here, we re-22

strict the consideration of specificmodels to that of the cumulative logitmixedmodel, which really requires themultivariate23

form above.24

The cumulative logit mixed model (CLMM). The cumulative logit model (e.g. McCullagh, 1980) is a popular and conceptually25

simple model for ordinal response variables Y taking ordered categorical values r in {1, . . . , R}. It is motivated (e.g. Tutz,26

2012) by assuming that Y is a coarse version of a latent continuous variable Y ∗ = f (·)+ ε, with f (·) a function of predictors27

and ε the error with distribution ε
i.i.d.
∼ Logistic(0, 1). The connection between the observed ordinal and the latent variable28

is defined as: Y = r ⇔ θr−1 < Y ∗ ≤ θr ; with−∞ = θ0 < θ1 < · · · < θR = ∞ the threshold coefficients.29

The cumulative logit mixed model has been introduced by Hedeker and Gibbons (1994), and Tutz and Hennevogl (1996)30

exemplified it as a special case of MGLMMs. Here, the CLMM with varying coefficients is defined as follows: Let yit =31

(yit1, . . . , yitR)⊤ be the response vector of individual i at time t , which is coded as yitr = 1 if Yit = r and yitr = 0 if Yit ≠ r .32

Assume that yit is an outcome of a multinomial distribution with the conditional probabilities E(yit |bi; xit ,wit , zit) = πit ,33

with xit andwit the predictor vectors to be incorporated into the design matrices Xit andWit . The CLMM links the predictor34

ηit with the conditional probabilitiesπit via ηitq = gq(πit) = log((πit1+· · ·+πitq)/(1−πit1−· · ·−πitq)) = logit(P(Yit ≤ q))35

for q = 1, . . . ,Q = R− 1. The predictor function is defined as36

MCLMM :

ηit1
...

ηitQ

 =
1 x⊤it

. . . x⊤it
1 x⊤it

β(zit)+

1 w⊤it
...

...

1 w⊤it

 bi, (3)37

where the qth row determines the logits of responding with {1, . . . , q} rather than with {q+1, . . . , R}. The first Q elements38

of β(·) are the varying intercepts, or varying thresholds θ1(·), . . . , θR−1(·) in terms of the latent variable motivation, that take39

into account the direct effects of the moderators zit . In order to maintain the order P(Yit ≤ 1) ≤ · · · ≤ P(Yit ≤ Q ), these40

intercepts must satisfy β1(zit) ≤ · · · ≤ βQ (zit) ∀ (i, t). Further, stacking the vectors x⊤it and (1,w⊤it ) in the design matrices41

constraints the corresponding effects to be identical for allQ cumulative logits. This constraint,which considerably simplifies42

the model, is commonly called the proportional odds assumption (e.g. McCullagh, 1980) or parallelism. For the direct effects43

of zit , the proportional odds assumption is relaxed in MCLMM since the corresponding varying intercepts are logit-specific.44

Therefore, MCLMM can be seen as a partial proportional odds model (e.g. Tutz, 2012, Chap. 9.1.3). Note that if R = 2, MCLMM is45

equivalent to a logistic mixed model.46

The unknown varying coefficients β(·) of the predictor function M (Eq. (1)) are proposed to be approximated by a47

piecewise constant function, based on model-based recursive partitioning, which is conceptually similar to regression trees48

(e.g. Breiman et al., 1984). These two approaches can be distinguished by their aims: regression trees attempt to discover49

differences in the mean, while model-based recursive partitioning aims to discover differences in the model coefficients.50

While recursive partitioning has certain drawbacks, particularly that it is a heuristic and may be instable regarding small51

changes in the data, its advantages for statistical learning are hardly covered by the alternative methods to date (cf. Hastie
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