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a b s t r a c t

New deterministic robust estimators of multivariate location and scatter are presented.
They combine ideas from the deterministic DetMCD estimator with steps from the
subsampling-based FastS and FastMM algorithms. The new DetS and DetMM estimators
perform similarly to FastS and FastMM on low-dimensional data, whereas in high dimen-
sions they are more robust. Their computation time is much lower than FastS and FastMM,
which allows to compute the estimators for a range of breakdown values. Moreover, they
are permutation invariant and very close to affine equivariant.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The need for robustmultivariate estimators that canwithstand a substantial amount of contamination iswell-recognized
nowadays. Examples of such high-breakdown estimators of location and scatter are the MVE and MCD estimators
(Rousseeuw, 1984), the Stahel–Donoho estimator (Stahel, 1981; Donoho, 1982), S-estimators (Rousseeuw and Yohai, 1984;
Davies, 1987; Rousseeuw and Leroy, 1987; Lopuhaä, 1989) andMM-estimators (Yohai, 1987). They are all highly robustwith
breakdown value up to 50%, but they differ in terms of efficiency, bias and outlier resistance. For a recent comparison, see
Hubert et al. (2014).

The computation of these estimators is challenging as their objective function is not convex and usually has several local
minima. To address this problem, the current algorithms start by drawing many random subsets and then iteratively apply
easy-to-compute steps that are guaranteed to decrease the objective function. Examples are FastMCD (Rousseeuw and Van
Driessen, 1999), FastS (Salibian-Barrera and Yohai, 2006) and FastMM (Salibian-Barrera et al., 2006). A disadvantage of such a
random sampling approach is the lack of permutation invariance: listing the observations in a different ordermight result in
different estimates. In Hubert et al. (2012) a deterministic estimator has been proposed which turns out to be highly robust
against outliers and which is very fast even in higher dimensions. As this method uses ideas from the FastMCD algorithm, it
was named DetMCD.

Here we propose two estimators which are also deterministic, robust and fast, and which are inspired by the objective
functions of the S and MM-estimators. For a sample x1, . . . , xn ∈ Rp, a multivariate S-estimator of location and scatter is
defined as the couple (µ̂, 6̂)which minimizes |S| under the condition

1
n

n
i=1

ρ

(xi − m)tS−1(xi − m)


= b (1)
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over all (m, S)wherem ∈ Rp and S is a p×p symmetric positive definite (SPD)matrix. In order to obtain positive breakdown
estimates, ρ should satisfy the following conditions:
(C1) ρ is symmetric around zero and twice continuously differentiable
(C2) ρ is strictly increasing on [0, c0] for some c0 > 0, constant on [c0,∞[, and ρ(0) = 0.

The constant b can be computed as EF0 [ρ(∥Z∥)] where F0 = N(0, Ip) to ensure consistency at the normal model. For ρ one
often chooses the function

ρ(x) =


x2

2
−

x4

2c2
+

x6

6c4
for |x| 6 c

c2

6
for |x| > c

(2)

where c is an appropriate tuning constant. This is known as Tukey’s bisquare ρ function, as indeed its derivativeψ contains
two squares:

ρ ′(x) = ψ(x) =

x

1 −

 x
c

22

for |x| 6 c

0 for |x| > c.

We will use this ρ-function throughout the paper. An alternative choice is the class of translated bisquare ρ-functions
introduced by Rocke (1996).

Lopuhaä and Rousseeuw (1991) showed that the breakdown value of a multivariate S-estimator is b/ρ(c). Under the
normal model b can be computed as (Campbell et al., 1998):

b =
p
2
χ2
p+2(c

2)−
p(p + 2)

2c2
χ2
p+4(c

2)+
p(p + 2)(p + 4)

6c4
χ2
p+6(c

2)+
c2

6
(1 − χ2

p (c
2))

where χ2
ν is the cdf of the χ2 with ν degrees of freedom. For a given breakdown value between 0% and 50% we can derive

the value of the corresponding tuning parameter c in (2), see Table 3 in Rousseeuw and Yohai (1984).
Subsampling-based algorithms for multivariate S-estimators were proposed by Ruppert (1992) and Campbell et al.

(1998). Next Salibian-Barrera and Yohai (2006) developed the FastS algorithm for regression S-estimators, which was ex-
tended to multivariate S-estimators for location and scatter in Salibian-Barrera et al. (2006). Section 2 describes the multi-
variate FastS algorithm.

TheMCDestimator, the FastMCDalgorithmand theDetMCDestimator are explained in Section 3. In Section 4we combine
ideas from DetMCD and FastS, yielding our proposed deterministic estimator DetS. We also explain how this yields DetMM,
a deterministic estimator related to the MM-estimator. Section 5 studies the performance of DetS by simulation. The DetS
and DetMM methods are applied to real data in Section 6, and their permutation invariance and near-affine equivariance
are studied in Section 7. Section 8 concludes with suggestions for future research.

2. The FastS algorithm for multivariate location and scatter

We start by laying out the main idea of the FastS algorithm. First, the S in (1) is written as σ 20 with |0| = 1 and σ =

|6|
1/(2p), so that the equivalent objective is to find the triplet (µ̂, 0̂, σ̂ ) that minimizes s under the restriction

1
n

n
i=1

ρ


(xi − m)tG−1(xi − m)

s


= b (3)

over all (m,G, s) where m ∈ Rp,G is a p × p SPD matrix with |G| = 1 and s is a positive scalar. The location and scatter
estimates are then (µ̂, σ̂ 20̂).

The algorithm starts with N initial estimates (µ̂(0)1 , 0̂
(0)
1 , σ̂

(0)
1 ), . . . , (µ̂

(0)
N , 0̂

(0)
N , σ̂

(0)
N ) obtained by drawing N random sub-

sets of size p + 1 that have a covariance matrix with non-zero determinant (up to numerical precision), and calculating
the classical mean µ̂

(0)
l and covariance matrix 6̂

(0)
l of the lth subset. Then we set 0̂

(0)
l = |6̂

(0)
l |

−1/p6̂
(0)
l and σ̂ (0)l = medn

i=1
(xi − µ̂

(0)
l )

t(0̂
(0)
l )

−1(xi − µ̂
(0)
l ) for all l = 1, . . . ,N . Next those estimates are refined by performing k so-called I-steps,

resulting in

(µ̂
(k)
1 , 0̂

(k)
1 , σ̂

(k)
1 ), . . . , (µ̂

(k)
N , 0̂

(k)
N , σ̂

(k)
N ).

The jth I-step to refine the estimate (µ̂(j−1)
l , 0̂

(j−1)
l , σ̂

(j−1)
l ) goes as follows:

1. Refine the scale:

σ̂
(j)
l = σ̂

(j−1)
l

 1
nb

n
i=1

ρ



(xi − µ̂

(j−1)
l )t(0̂

(j−1)
l )−1(xi − µ̂

(j−1)
l )

σ̂
(j−1)
l

.
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