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h i g h l i g h t s

• Convex-MARS enables a convex approximation without degrading the quality of fit.
• Convex-MARS is appropriate for approximations in convex optimization problems.
• The threshold version of Convex-MARS provides stronger convexity and better accuracy.
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a b s t r a c t

Multivariate adaptive regression splines (MARS) provide a flexible statistical modeling
method that employs forward and backward search algorithms to identify the combination
of basis functions that best fits the data and simultaneously conduct variable selection.
In optimization, MARS has been used successfully to estimate the unknown functions in
stochastic dynamic programming (SDP), stochastic programming, and a Markov decision
process, and MARS could be potentially useful in many real world optimization problems
where objective (or other) functions need to be estimated from data, such as in surrogate
optimization. Many optimization methods depend on convexity, but a non-convex MARS
approximation is inherently possible because interaction terms are products of univariate
terms. In this paper a convex MARS modeling algorithm is described. In order to ensure
MARS convexity, two major modifications are made: (1) coefficients are constrained, such
that pairs of basis functions are guaranteed to jointly form convex functions and (2) the
form of interaction terms is altered to eliminate the inherent non-convexity. Finally, MARS
convexity can be achieved by the fact that the sum of convex functions is convex. Convex-
MARS is applied to inventory forecasting SDP problemswith four and nine dimensions and
to an air quality ground-level ozone problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Computermodeling is having a profound effect on scientific research.Many processes are so complex that physical exper-
imentation is too time-consuming, too expensive or simply impossible. As a result, experiments have increasingly turned to
mathematicalmodels to simulate these complex systems. Advances in computational power have allowedboth greater com-
plexity and more extensive use of such models. The purpose of design and analysis of computer experiments (DACE, Sacks
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et al., 1989; Kleijnen, 2008; Chen et al., 2006) is to provide methods for conducting computer experiments to build a meta-
model that can be efficiently employed to improve the performance of a complex system. In DACE, the computer experiment
replaces the physical experiment by organizing computer model runs and observing the model output of performance. A
common DACE objective is to obtain a computationally-efficient response surface approximation (a.k.a., metamodel) of the
output. This metamodel may then be used to study and potentially ‘‘optimize’’ the performance of the system. The effec-
tiveness of an optimization method in using a metamodel to improve system performance depends on the convexity of
the objective function (Luenberger, 2004). A non-convex metamodel requires a global optimization method, and in practice
these typically cannot guarantee optimality. Consequently, if the true underlying performance objective function is known
to be convex, it is highly desirable for the approximating metamodel to share this critical property.

Multivariate adaptive regression splines (MARS, Friedman, 1991) modeling has been applied in DACE-based approaches
for some large-scale optimization problems, including continuous-state stochastic dynamic programming (SDP, Chen, 1999;
Chen et al., 1999; Tsai et al., 2004; Tsai and Chen, 2005; Cervellera et al., 2007; Yang et al., 2007, 2009), Markov decision
processes (MDP, Chen et al., 2003; Siddappa et al., 2007, 2008), and two-stage stochastic programming (SP, Pilla et al., 2008,
2012; Shih et al., 2014). The DACE-based SDP andMDP approaches used an experimental design to discretize the continuous
(or near-continuous) state space, and then used MARS to approximate the continuous value function over the state space.
The MDP application studied an airline revenue management problemwith the objective of more accurately estimating the
fair market value of a seat over time. The two-stage SP problem studied an airline fleet assignment model that seeks an
assignment of aircraft in the first stage, so that swapping of crew-compatible aircraft can be achieved in the second stage to
maximize expected revenue. The DACE approach for SPwas used to create aMARS approximation of the first-stage expected
revenue objective function, so as to speed up the first-stage optimization. MARS has been successful in these applications
not only because of the flexibility of its modeling, but also its parsimony. Parsimony is critical in achieving computational-
tractability in large-scale complex problems. Shih et al. (2014) added a datamining variable selection phase that reduced the
dimension of the airline fleet assignment model from about 1200 to 400 variables prior to executing DACE, so as to reduce
the computational effort of DACE from 2.5 days to an estimated 0.5 days.

Under the assumption that an optimization function f is convex, it is desired that the response surface metamodel f̂ that
estimates f be convex as well. For example, in the above-mentioned SDP, MDP, and SP problems, the underlying function
is theoretically convex. Convexity is not a typical assumption of statistical modeling methods, and a specialized approach
must be developed. There are several options for DACE metamodeling, including polynomial response surface models (Box
and Draper, 1987), spatial correlationmodels, a.k.a., kriging (Sacks et al., 1989), MARS, regression trees (Breiman et al., 1984;
Friedman, 2001), and artificial neural networks (Haykin, 1999). None of these guarantee convexity. Convex-MARS uses the
modification of both the MARS basis functions and algorithms to build a sum of convex functions, therefore, the final ap-
proximation will be convex. The C code is available from this website: http://www.uta.edu/cosmos/software.php.

2. Multivariate adaptive regression splines (MARS)

Friedman (1991) introduced MARS as a statistical method for high-dimensional modeling with interactions. The MARS
model is essentially a linear statistical model with a forward stepwise algorithm to select model terms followed by a
backward procedure to prune the model terms. A univariate version (appropriate for additive relationships) was presented
by Friedman and Silverman (1989). The MARS approximation bends to model curvature at ‘‘knot’’ locations, and one of the
objectives of the forward stepwise algorithm is to simultaneously select variables and appropriate knots. After selection of
the basis functions is completed, smoothness to achieve a certain degree of continuity may be applied. MARS is both flexible
and easily implemented with the computational effort primarily dependent on the number of basis functions added to the
model. The MARS approximation is a linear model:

f̂M(x; β) = β0 +

M
m=1

βmBm(x),

where Bm(x) initially is a basis function of the form described below in Eq. (1) that later can be smoothed,M is the number of
linearly independent basis functions, and βm is the unknown coefficient for themth basis function. In the forward stepwise
algorithm, univariate basis functions are represented in the form of truncated linear functions,

b+(x; k) = [+(x − k)]+, b−(x; k) = [−(x − k)]+, (1)
where [q]+ = max{0, q} and k is a univariate knot. The set of eligible knots are assigned separately for each input variable
dimension and are chosen to coincide with input levels represented in the data. Interaction basis functions are created by
multiplying an existing basis function with a truncated linear function involving a new variable. Both the existing ‘‘parent’’
basis function and the newly created interaction basis function are used in the MARS approximation. Thus, the form of the
mth basis function is

Bm(x) =

Lm
l=1

[sl,m · (xv(l,m) − kl,m)]+,

where xv(l,m) is the input variable corresponding to the lth truncated linear function in themth basis function, kl,m is the knot
value corresponding to xv(l,m), and sl,m is+1 or−1. Lm is the number of truncated linear functionsmultiplied in themth basis
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