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a b s t r a c t

Generalized models for scalar responses with functional covariates are extended to in-
clude linear functional interaction terms. The coefficient functions are estimated using
basis expansions and maximization of a log-likelihood, which is penalized to impose
smoothness upon the coefficient functions. The respective smoothing parameters for
the penalties are estimated from the data, e.g. via generalized cross-validation. Fur-
ther functional or scalar terms as well as functional interactions of higher order can
be added within the same framework. The performance of the introduced approach is
tested in simulations. Additionally, it is applied to the two motivating data sets, to spec-
troscopic data of a fossil fuel and to cell chip sensor data, where three functional sig-
nals are measured over time. The main aim is to predict the respective response, namely
the heat value of the fossil fuel and the concentration of paracetamol in the cell chip
medium.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Functional data analysis (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Horvath and Kokoszca, 2012) is an
active field of research. The amount and diversity of functional data are growing due to technical developments in signal
recording and inspire researchers in the field of statistics as well as practitioners. Methods range from (semi-) parametric
to nonparametric regression to classification approaches (e.g. Ferraty and Vieu, 2003, 2006). Overviews of established and
recent methods in functional data analysis can be found in Gonzalez Manteiga and Vieu (2007), Ferraty and Romain (2011)
or Bongiorno et al. (2014).

For a scalar response and functional covariates, many regression models include only a single functional covariate, such
as the non-parametric functional regression models of Burba et al. (2009); Wang et al. (2012) and Kudraszow and Vieu
(2013). The work of Ferraty and Vieu (2009) introduces a non-parametric additive model including two or more functional
covariates.

✩ Please see the online Appendix A for supplementary material.
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Themost commonparametricmodel is the generalized functional linearmodel, forwhich severalmethods for estimation
have been proposed. One strain of research expands both the functional covariate and the coefficient function in a principal
component basis (e.g. Müller and Stadtmüller, 2005; Reiss and Ogden, 2007). Other approaches use a spline basis expansion
of the coefficient function or the functional covariate and a smoothness penalty approach (e.g. James, 2002; Wood, 2011;
Goldsmith et al., 2011).

Although some of the above methods include effects of more than one functional covariate, the estimation of interaction
effects between functional covariates does not seem to have received any attention until now. If the assumption of additivity
of the effects of multiple functional covariates is questionable, a sensible way to extend the generalized functional linear
model is to add covariate interaction effects. This paper introduces a functional interaction term


xi1(s)xi2(t)β(s, t)dsdt of

functional covariates xi1(s) and xi2(t) with bivariate parameter function β(s, t), extending the model with only main effects
in Wood (2011).

Our bivariate parameter function β(s, t) for the interaction term is represented in terms of a tensor product spline basis.
A similar representation of a bivariate coefficient function can be found in Marx and Eilers (2005) in the context of scalar-
on-image regression. Marx and Eilers (2005) also examine a generalized linear model and use a penalized log-likelihood
approach for estimation. The main difference lies in the fact that Marx and Eilers (2005) consider a single image covariate
xi(s, t), while we have two covariates xi1(s) and xi2(t) and consider their main effects as well as their interaction. Our model
is also related to Yao and Müller (2010), who consider a pth-order polynomial model, where the scalar mean response
depends on two-way up to p-way interaction effects of the centered predictor processwith itself. Our approach, on the other
hand, allows for interaction effects between different functional covariates. Yao and Müller (2010) expand the functional
regression parameters as well as the centered functional covariate in the empirical eigenfunction basis of the functional
covariate. By contrast, we do not assume the interaction effect surface to lie in the space spanned by the eigenfunctions of
the two covariate processes, but to be smooth, and use penalized splines for estimation. Bivariate parameter functions can
also be found for example in Antoch et al. (2010) or Ivanescu et al. (2013) in the context of function-on-function regression.

Our method, although general, is motivated by two data sets. The first data set contains spectra of fossil fuel samples
measured at the ultraviolet–visible (UV–VIS) and near infrared (NIR) range. The main goal here is the prediction of the
heat value of a sample based on its spectrum. The second data set consists of cell chip data, where three different and
concurrently measured sensor signal types reflect the metabolism of a layer of living cells growing on the chip surface.
Especially the prediction of the concentration of probably bioactive substances contained in the cell nutrient medium is of
interest.

In Section 2, we present our model and the estimation method used. Section 3 presents an extensive simulation study.
Our method is applied to the two motivating data sets in Sections 4 and 5. We close with a short discussion and outlook in
Section 6.

The two data sets and code fully reproducing our analyses are provided in an online Appendix A.

2. Method

2.1. Scalar-on-function regression with interaction term

Weextend the generalized functional linearmodel to include interactions for functional covariates.We assume the scalar
responses yi, i = 1, . . . , n, to be (conditionally) mutually independent and to follow an exponential family distributionwith
a known link function g(·) linking the expected value µi of yi to the linear predictor ηi,

g(µi) = ηi = β0 +


xi1(s)ξ1(s)ds +


xi2(t)ξ2(t)dt +


xi1(s)xi2(t)β(s, t)dsdt. (1)

Here, β0 is the intercept term, and xi1(s) and xi2(t) are two functional covariates that are expected to influence yi. The
covariate values xi1(s) are observed without error in the interval D with discrete observation points {s1, . . . , sJ} ⊂ D.
Likewise, xi2(t) is observed without error in the interval E with discrete observation points {t1, . . . , tK } ⊂ E. ξ1(s),
ξ2(t) and β(s, t) are unknown functional coefficients corresponding to the main and interaction terms. In the linear case
yi = µi + εi, we assume εi to be independent and identically distributed normal errors with zero mean and variance
σ 2. Following Wood (2011) in approximating the integrals of Model (1) by quadrature sums, the model can be expressed
as

g(µi) ≈ β0 + h1

J
j=1

xi1(sj)ξ1(sj) + h2

K
k=1

xi2(tk)ξ2(tk) + h1h2

J
j=1

K
k=1

xi1(sj)xi2(tk)β(sj, tk),

with h1, h2 being the lengths of the intervals between two observation points in D and E, respectively, assuming a regular
grid of observations on both intervals. In the case of unequal spacing, the sums could be replaced by appropriate weighted
sums from quadrature rules.
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