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a b s t r a c t

Given a high dimensional p-vector of continuous predictors X and a univariate response
Y , principal fitted components (PFC) provide a sufficient reduction of X that retains all re-
gression information about Y in X while reducing the dimensionality. The reduction is a
set of linear combinations of all the p predictors, where with the use of a flexible set of ba-
sis functions, predictors related to Y via complex, nonlinear relationship can be detected.
In the presence of possibly large number of irrelevant predictors, the accuracy of the suf-
ficient reduction is hindered. The proposed method adapts a sequential test to the PFC to
obtain a ‘‘pruned’’ sufficient reduction that shedoff the irrelevant predictors. The sequential
test is based on the likelihood ratio which expression is derived under different covariance
structures of X |Y . The resulting reduction has an improved accuracy and also allows the
identification of the relevant variables.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Big-Mac dataset (Enz, 1991), a simple dataset that gives average values in 1991 of several economic indica-
tors for 45 world cities. It has nine continuous predictors and a continuous outcome variable. The outcome is the minimum
labor to buy a Big Mac and fries in US dollars. A regression fitting to the raw data without any transformation of the re-
sponse or predictors yields a multiple R2, the square of the correlation between the observed and the fitted response to be
0.46. After a graphical exploration and the appropriate transformation of the variables, we obtained R2

= 0.87. The reason
of this drastic improvement is that the relationships between the response and the predictors, initially nonlinear (Fig. 1),
were transformed into linear through amodel fitting procedure guided by diagnostics (see Cook andWeisberg, 1982, Section
1.2). With nine predictors, this procedure is easily doable. However, when p is large, say 50 or more, a regression modeling
using this iterative procedure is rather a daunting task, tedious and imponderable. Ubiquitously, a forward linear model is
considered, and the relationship between individual predictors and the response is often unexplored because of the high
dimensionality of the predictors. Diagnostic methods are seldom used formodel checking. Using an ill-fittingmodel to solve
a variable selection problem can result in reduced performance.

Most variable selection methods are constructed around forward linear regression models. Because the ordinary least
squares estimation does not yield satisfactory results when p is large, it is often assumed that a large portion of these p pre-
dictors is irrelevant in explaining the response Y . The corresponding coefficients of these predictors in a linear regression
model are shrunk or even set to zero. This brings the concept of sparsity into regression modeling with two induced con-
sequences: parsimony of the model and accuracy in prediction. A flurry of research on algorithms and theory for variable
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Fig. 1. BigMac partial scatter-matrix plot.

selection involving sparsity constraints have been observed in recent years. These methods include the soft thresholding
(Donoho, 1995), the nonnegative garotte (Breiman, 1995), lasso (Tibshirani, 1996), the smoothly clipped absolute deviation
penalty (SCAD; Fan and Li, 2001), elastic net (Zou and Hastie, 2005), and Dantzig selector (Candès and Tao, 2007) among
many others. Thesemethods work exceptionally well when themodel is accurate. However they do not perform adequately
when the predictors and the response have an arbitrary non-linear relationship.

A recent methodology proposed by Cook (2007) brings significant openings to address the shortcomings of linear mod-
els in capturing information about high dimensional predictors non-linearly related to the response. Cook (2007) proposed
the concept of sufficient dimension reduction in regression and set up a new paradigm of dimension reduction through a
likelihood-based approach called principal fitted components (PFC). A reduction R : Rp

→ Rd, d ≤ p, was defined to be suf-
ficient if it satisfies one of the following three statements: (i) Y |X ∼ Y |R(X), (ii) X |(Y , R(X)) ∼ X |R(X), and (iii) X Y |R(X).
The symbol stands for statistical independence, andU ∼ V stands forU and V having identical distribution. Statement (i)
holds in a forward regression while statement (ii) holds in an inverse regression setup. Under a joint distribution of (Y , X)
the three statements are equivalent.

Principal fitted components are a class of inverse regressionmodels that yield a sufficient reduction of the predictors. Let
Xy denote the random vector X |(Y = y) and assume that there is a vector-valued function ν(Y ) ∈ Rd, with d ≪ min(n, p)
and E[ν(Y )] = 0, so thatXy can be represented by themodelXy ∼ N(µ+Γ ν(y), ∆). The termΓ ∈ Rp×d is a semi-orthogonal
matrix, and µ = E(X). The covariance ∆ is assumed to be independent of Y . Under this model the translated conditional
means E(Xy) − µ fall in the d-dimensional subspace span(Γ ), and thus Γ captures the dependency between X and Y . Once
the response is observed, the term ν(y) which is unobserved can be approximated using a flexible set of basis functions as
ν(y) ≈ βf(y). The subsequent model

Xy = µ + Γ βf(y) + ∆1/2ε (1)

is called a PFC model where ε is assumed to be normally distributed with mean 0 and variance Ip. Under this model, Cook
(2007) showed that Γ T∆−1X is a sufficient reduction of X . The choice of the basis function allows to capture predictors that
are linearly and nonlinearly related to the response. The maximum likelihood estimators of the parameters in the model
have been obtained (Cook, 2007; Cook and Forzani, 2008).

In high dimensional settings, irrelevant predictors, which often abound, can hinder the accuracy of the estimated suffi-
cient reduction. Our goal is to obtain a ‘‘pruned’’ estimator of the sufficient reduction, which not only helps achieve accuracy,
but also allows the identification of the relevant variables. By ‘‘pruning’’, we mean removing inactive predictors that do not
contain any regression information about the response. This is often called a sparse estimator.

An estimation of the sparse reduction kernel ∆−1Γ has been proposed by Li (2007) who established a framework to ob-
tain the sparse sufficient reduction using a regression-type formulationwith the lasso (Tibshirani, 1996) and elastic net (Zou
and Hastie, 2005) penalties. Chen et al. (2010) proposed the coordinate independent sparse sufficient dimension reduction
that shrinks row elements of ∆−1Γ while preserving the orthogonality constraint of Γ . Both methodologies are apt when
n ≫ p. We herein construct a sequential likelihood ratio test that is reminiscent of the idea of testing predictor contribution
in sufficient dimension reduction of Cook (2004). It helps obtain the sparse reduction under structures of∆ that allow p > n.
We show the performance of the procedure through simulations.

2. A sequential test for sparse PFC

We assume that the p-vector predictor X can be partitioned as (XT
1 , XT

2 )T , with X2 ∈ Rp2 , and let (Γ T
1 , Γ T

2 )T , ∆ =

(∆ij)i,j=1,2 and ∆−1
= (∆ij)i,j=1,2 be the corresponding partitions of Γ , ∆ and ∆−1 following the partition of X . Under
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