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a b s t r a c t

Under a random effects logistic regression model, we compare two experimental
treatments with a placebo in dichotomous data under an incomplete block crossover
trial. We develop procedures for testing non-equality of treatments, as well as interval
estimators for the relative treatment effects. We employ Monte Carlo simulations to
evaluate the performance of these test procedures and interval estimators in a variety of
situations. Finally, we use the data taken as a part of the crossover trial that compared
the low and high doses of an analgesic with a placebo for the relief of pain in primary
dysmenorrhea to illustrate the use of these test procedures and estimators developed here.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Because each patient serves as his/her own control, the crossover trial has been often used to improve power or reduce
the number of patients needed for the parallel groups design when one studies non-curative treatments to chronic diseases,
including angina pectoris, epilepsy, hypertension or asthma (Smith et al., 1985; Rhind et al., 1985; Fleiss, 1986; Hills and
Armitage, 1979; Grizzle, 1965). To reduce the logistic supports, the length of duration and the risk of being lost to follow
up in a crossover trial, however, we may consider assigning each patient to receive only a subset of treatments under
comparison by use of an incomplete block design (Senn, 2002). For example, consider the double-blind placebo controlled
crossover trial studying the effect of taking 12 and 24 µg of formoterol solution aerosol versus the placebo (Senn, 2002). For
practical reasons, it was decided that each patient would receive only two of the three treatments: the placebo, 12 or 24 µg
of formoterol solution. Senn (2002) focused attentions on continuous data and discussed methods to analyze this type of
data. Although the research on crossover trials has been intensive (Fleiss, 1986; Hills and Armitage, 1979; Grizzle, 1965;
Senn, 2002, 2006; Jones and Kenward, 1989), none of these publications discusses procedures for testing non-equality of
treatments, aswell as estimation of the relative treatment effects in dichotomous data under the incomplete block crossover
trial.

Assuming a random effects logistic regression model, we focus discussion on testing non-equality between two
experimental treatments and a placebo in dichotomous data when patients receive two of three treatments under an
incomplete block two-period crossover trial. We develop test procedures in closed form based on the weighted-least-
squares (WLS) method (Senn, 2002; Fleiss, 1981). We further develop interval estimators for the relative treatment effects.
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We employ Monte Carlo simulation to evaluate the performance of these test procedures and interval estimators in a
variety of situations. Finally, we use the data taken as a part of the crossover trial comparing the low and high doses of
an analgesic with a placebo for the relief of pain in primary dysmenorrhea (Jones and Kenward, 1987) to illustrate the use
of test procedures and estimators developed here.

2. Notation, model assumptions and methods

Consider comparing two experimental treatments A and Bwith a placebo (P) under a cross-over designwith two periods.
Let X–Y denote the groupwith the treatment-receipt sequence inwhich a patient receives treatment X at the first period and
then crossover to receive treatment Y at the second period. Suppose thatwe randomly assign ng patients to group g = 1with
P–A treatment-receipt sequence;= 2 with A–P treatment-receipt sequence;= 3 with P–B treatment-receipt sequence;= 4
with B–P treatment-receipt sequence; = 5 with A–B treatment-receipt sequence; and = 6 with B–A treatment-receipt
sequence. As commonly assumed for a crossover design, we assume that there is no carry-over effect due to the treatment
administered at an earlier period with an adequate wash-out period. If the assumption of no carry-over effect cannot be
ensured on the basis of our subjective knowledge, as noted by Fleiss (1986, 1989), Senn (1992, 2002) and Schouten andKester
(2010), we should not employ the crossover design. For patient i (=1, 2, . . . , ng) assigned to group g (=1, 2, 3, 4, 5, 6), we
let Y (g)

iz denote the patient response at period z (=1, 2), and Y (g)
iz = 1 for positive; and = 0, otherwise. We assume further

the probability of positive response Y (g)
iz = 1 for patient i (=1, 2, . . . , ng) assigned to group g (=1, 2, 3, 4, 5, 6) at period

z (=1, 2) is given by the following random effects logistic regression model:
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where s(g)i denotes the randomeffect due to the ith patient assigned to group g and follows an unspecified probability density
function fg(s); X

(g)
iz1 denotes the indicator function of treatment-receipt for treatment A, and = 1 if the patient at period z

receives treatment A, and = 0, otherwise; X (g)
iz2 denotes the indicator function of treatment-receipt for treatment B, and = 1

if the patient at period z receives treatment B, and = 0, otherwise; 1(g)
i (z = 2) denotes the indicator function of period

2, and = 1 for period 2, and = 0, otherwise; ηAP and ηBP denote the respective effect of treatments A and B relative to the
placebo, as well as γ represents the effect of period 2 versus period 1. Because we randomly assign patients to a group with
various treatment-receipt sequences, we may assume that the probability density functions fg(s) are equal for all g and we
let f0(s) denote these common probability density functions. On the basis of model (1), the OR of a positive response for
a given fixed period on the same patient between treatment A and placebo is equal to ϕAP = exp(ηAP). When there is no
effect due to treatment A, ϕAP = 1 (i.e., ηAP = 0). When treatment A increases the probability of positive response, ϕAP > 1.
When treatment A decreases the probability of positive response, ϕAP < 1. The OR of a positive response for a given fixed
period on the same patient between treatment B and placebo is given by ϕBP = exp(ηBP). Let n

(g)
rc denote the number of

patients in group g (=1, 2, 3, 4, 5, 6) with the vector of response (Y (g)
i1 = r, Y (g)

i2 = c), where r = 1, 0, c = 1, 0, among
ng patients. The random frequencies {n(g)

rc |r = 1, 0, c = 1, 0} then follow the quadrinomial distribution with parameters
ng and {π

(g)
rc |r = 1, 0, c = 1}, where π

(g)
rc denotes the cell probability that a randomly selected patient i from group g has

the vector of response (Y (g)
i1 = r, Y (g)

i2 = c). We can estimate π
(g)
rc by the unbiased consistent sample proportion estimator

π̂
(g)
rc = n(g)

rc /ng . As shown in the Appendix, we can express the OR of a positive response between treatment A and placebo
for a fixed period on a given patient under model (1) in terms of π (g)

rc ’s as
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regardless of f0(s). Similarly, we can express the OR of a positive response between treatment B and a placebo for a fixed
period on a given patient under model (1) in terms of π (g)

rs ’s as
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Furthermore, we can show that the OR of a positive response between treatments B and A for a fixed period on a given
patient under model (1) is equal to
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When substituting π̂
(g)
rc for π

(g)
rc in (2), we obtain the consistent estimator for ηAP(= log(ϕAP)) as
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