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a b s t r a c t

Estimation of a covariance matrix or its inverse plays a central role in many statistical
methods. For these methods to work reliably, estimated matrices must not only be in-
vertible but also well-conditioned. The current paper introduces a novel prior to ensure a
well-conditioned maximum a posteriori (MAP) covariance estimate. The prior shrinks the
sample covariance estimator towards a stable target and leads to a MAP estimator that is
consistent and asymptotically efficient. Thus, the MAP estimator gracefully transitions to-
wards the sample covariancematrix as the number of samples grows relative to thenumber
of covariates. The utility of theMAP estimator is demonstrated in two standard applications
– discriminant analysis and EM clustering – in challenging sampling regimes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of a covariancematrix or its inverse plays a central role inmany statisticalmethods, ranging from least squares
regression to EMclustering. In these applications it is crucial to obtain estimates that are not only non-singular but also stable
under small perturbations in sample values. It is well known that the sample covariance matrix

S =
1
n

n
j=1

(yj − ȳ)(yj − ȳ)t

is the maximum likelihood estimate of the population covariance 6 ∈ Rp×p of a random sample y1, . . . , yn ∈ Rp from a
multivariate normal distribution. When the number of components p of each sample point exceeds the sample size n, the
sample covariance S is no longer invertible. Even when n slightly exceeds p, the estimate S can be unstable. Introducing a
penalty in the maximum likelihood framework offers a reliable means of stabilizing covariance estimation.

To motivate our choice of penalization, consider the eigenvalues of the sample covariance matrix in a simple simulation
experiment. We drew n independent samples from a 10-dimensional multivariate normal distribution yi ∼ N(0, I10). Fig. 1
presents boxplots of the sorted eigenvalues of the sample covariance matrix S over 100 trials for sample sizes n drawn from
the set {5, 10, 20, 50, 100, 500}. The boxplots descend from the largest eigenvalue on the left to the smallest eigenvalue on
the right. The figure vividly illustrates the previous observation that the highest eigenvalues tend to be inflated upwards
above 1, while the lowest eigenvalues are deflated downwards below 1 (Ledoit and Wolf, 2004, 2012). In general, if the
sample size n and the number of components p approach ∞ in such a way that the ratio p/n approaches ζ ∈ (0, 1), then
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Fig. 1. Boxplots of the sorted eigenvalues of the sample covariance matrix S over 100 random trials. Here the number of components p = 10, and the
sample size n is drawn from the set {5, 10, 20, 50, 100, 500}.

the eigenvalues of S tend to the Marĉenko–Pastur law (Marĉenko and Pastur, 1967), which is supported on the interval
([1−

√
ζ ]

2, [1+
√

ζ ]
2). Thus, the distortionworsens as ζ approaches 1. The obvious remedy is to pull the highest eigenvalues

down and push the lowest eigenvalues up.
In this paper, we introduce a novel prior which effects the desired adjustment on the sample eigenvalues. Maximum a

posteriori (MAP) estimation under the prior boils down to a simple nonlinear transformation of the sample eigenvalues. In
addition to proving that our estimator has desirable theoretical properties, we also demonstrate its utility in extending two
fundamental statistical methods – discriminant analysis and EM clustering – to contexts where the number of samples n is
either on the order of or dominated by the number of parameters p.

The rest of our paper is organized as follows. Section 2 discusses the history of stable estimation of structured and
unstructured covariance matrices. Section 3 specifies our Bayesian prior and derives the MAP estimator under the prior.
Section 4 proves that the estimator is consistent and asymptotically efficient. Section 5 reports finite sample studies com-
paring our MAP estimator to relevant existing estimators. Section 6 illustrates the estimator for some common tasks in
statistics. Finally, Section 7 discusses limitations, generalizations, and further applications of the estimator.

2. Related work

Structured estimation of covariance matrices can be attacked from two complementary perspectives: generalized linear
models and regularization (Pourahmadi, 2011, 2013). In this work we consider the problem from the latter perspective.
Regularized estimation of covariance matrices and their inverses has been a topic of intense scrutiny (Wu and Pourahmadi,
2003; Bickel and Levina, 2008), and the current literature reflects a wide spectrum of structural assumptions. For instance,
banded covariancematrices are appropriate for time series and spatial data,where the order of the components is important.
It is also helpful to impose sparsity on a covariance matrix, its inverse, or its factors in a Cholesky decomposition or other
factorization (Huang et al., 2006; Rohde and Tsybakov, 2011; Cai and Zhou, 2012; Ravikumar et al., 2011; Rajaratnam et al.,
2008; Khare and Rajaratnam, 2011; Fan et al., 2011; Banerjee et al., 2008; Friedman et al., 2008; Hero and Rajaratnam, 2011,
2012; Peng et al., 2009).

In this work, we do not assume any special prior structure. Our sole concern is to directly address the distortion in the
eigenvalues of the sample covariancematrix. Thus,wework in the context of rotationally-invariant estimators first proposed
by Stein (1975). If S = UDU t is the spectral decomposition of S , then Stein suggests alternative estimators of the form

6̂ = Udiag(e1, . . . , ep)U t

that modify the eigenvalues but not the eigenvectors of S . In particular, Stein (1975), Haff (1991), Ledoit and Wolf (2004)
and Warton (2008) study the family

6̂ = (1 − γ )S + γ T (1)
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