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a b s t r a c t

A new density estimator called RASH, for Random Average Shifted Histogram, obtained by
averaging several histograms as proposed in average shifted histograms, is presented. The
principal difference between the two methods is that in RASH each histogram is built
over a grid with random shifted breakpoints. The asymptotic behavior of this estimator is
established for the one-dimensional case and its performance through several simulations
is analyzed. RASH is compared to several classic density estimators and to some recent
ensemble methods. Although RASH does not always outperform the other methods, it is
very simple to implement, being also more intuitive. The two dimensional case is also
analyzed empirically.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There is no doubt that, in regression and classification, ensemble learning, which consists on combining several models,
gives rise to more complex models that largely outperform the classical simple methods. Algorithms like Bagging (Breiman,
1996a), Boosting (Freund and Schapire, 1997), Stacking (Breiman, 1996b; Wolpert, 1992) and Random Forests (Breiman,
2001) have been deeply studied both from the standpoint of theory and that of applications and they have evolved
into many variants achieving very high performances when tested over tens of different data sets from the machine
learning benchmark. These algorithms have been designed for supervised learning, initially restricted to regression or binary
classification. Several extensions are actually under study: multivariate regression and multi-class learning, among others.

Nevertheless, there exist very few extensions of ensemble methods for unsupervised learning such as clustering analysis
or density estimation. In this work we present a contribution to this last case, which is an important problem in statistics.
Some extensions of Boosting (Di Marzio and Taylor, 2004), Bagging (Ridgeway, 2002; Rosset and Segal, 2002) and Stacking
(Smyth and Wolpert, 1999) to density estimation have been already considered. Other approaches inspired from Bagging
and Stacking have also been studied empirically (Bourel and Ghattas, 2013).

We suggest a new simple algorithm, Random Average Shifted Histogram (RASH) for density estimation aggregating
histogramswhich are ‘‘weak learners’’ in this context. Our idea arises from the average shifted histogram introduced by Scott
(1992): to avoid the problem of the histogram’s origin choice, this method averages several histograms built using different
shifts of the breakpoints over a fixed grid. The main difference is that in RASH the breakpoints are randomly shifted. We
introduce thus a random breakpoints histogram (RH-estimate) and study its asymptotic properties. Then we build up our
aggregation estimate by averaging M RH-estimates. We show by extensive simulations that this kind of aggregation gives
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rise to better estimates. We compare our algorithm to Average Shifted Histogram (ASH) and to several classic algorithms
used in the literature. Besides being simple, our approach seems to be more intuitive and shows very high accuracy.

Section 2 gives a brief description of the histogram and its main asymptotic properties. Our algorithm is presented
in Section 3. In Section 4 we provide asymptotic results for the RH-estimate in the one-dimensional case: consistency,
asymptotic normality and rates of convergence. Section 5 describes the simulation study, where we compare our proposal
with several competitors and provide an extension to the two dimensional configurations. All proofs are given in the
Appendix.

2. Some density estimators

We start fixing some notations and describing the algorithmswewill comparewith RASH. We also recall some important
results about the histogram, kernel density estimator, average shifted histogram, and an aggregated model selection
introduced in Samarov and Tsybakov (2007).

2.1. Histogram

We consider, for an i.i.d. sample X1, . . . , Xn of random variables with density f , Ln intervals I1,n . . . , ILn,n where |Ij,n| =aj(n), aj+1(n)
 = hn for all n, and hn ↓ 0 as n → +∞.

The ordinary histogram (Hist) is defined as:
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When hn → 0 and nhn → ∞ we get the classical properties for the histogram:

E
fn,0(x)→ f (x), Var

fn,0(x) → 0.

The histogram depends on two parameters: the bin width hn and the origin x0. There is a huge literature that proposes
several optimal choices for hn. If we suppose that the underlying density f is Gaussian, it can be shown (see Scott, 1979) that
an optimal choice for h is:

hopt = 3.5σn−1/3,

whereσ is an estimate of the standard deviation.

2.2. Average shifted histogram

The histogram estimate may change significantly when the origin x0 changes, even if hn is fixed. Scott (1985), introduced
the Average Shifted Histogram (ASH) algorithm which aims to avoid choosing x0. It is a nonparametric density estimator
which averages several histograms with different origins. Consider for example an histogram with origin x0, bin width h,
and support
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obtaining a finer grid. For instance, if k = 0, we divide [0, h) into M intervals B0 = [0, δ), B1 =
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. Let νk be the number of observations falling in Bk and x ∈ B0 = [0, δ).

Then there areM ‘‘shifted’’ histograms with bin width h = Mδ which cover B0. The value of the first one at x is:

f1(x) =
ν1−M + ν2−M + · · · + ν0

nh
.

The value of the second one at x isf2(x) =
ν2−M + ν3−M + · · · + ν0 + ν1

nh
.

TheMth final shifted histogram which covers [0, δ) takes at x the value:

fM(x) =
ν0 + · · · + νM−1

nh
.
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