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a b s t r a c t

Parameter estimation for nonignorable nonresponse data is a challenging issue as themiss-
ing mechanism is unverified in practice and the parameters of response probabilities need
to be estimated. This article aims at applying the empirical likelihood to construct the con-
fidence intervals for the parameters of interest in linear regression models with nonignor-
able missing response data and the nonignorable missing mechanism is specified as an
exponential tilting model. Three empirical likelihood ratio functions based on weighted
empirical likelihood and imputed empirical likelihood are defined. It is proved that, except
one that is chi-squared distributed, all the others are asymptotically weighted chi-squared
distributed whenever the tilting parameter is either given or estimated. The asymptotic
normality for the related parameter estimates is also investigated. Simulation studies are
conducted to evaluate the finite sample performance of the proposed estimates in terms
of coverage probabilities and average widths for the confidence intervals of parameters. A
real data analysis is analyzed for illustration.

© 2014 Published by Elsevier B.V.

1. Introduction

Consider the classical linear regression model

yi = xτ
i β + εi, i = 1, . . . , n, (1.1)

whereβ is a d×1 vector of unknown regressionparameter and εi’s are independent and identically distributed (i.i.d.) random
errors with conditional mean E(ε|X) = 0. Throughout this paper, we focus on the situation that some of the responses yi in
a sample of size n may be missing and all the covariates or auxiliary variables xi’s are observed completely. In this way, we
obtain the following incomplete observations

(xi, yi, δi), i = 1, . . . , n,

where δi is a missing indicator for ith individual and δi = 0 if yi is missing, otherwise δi = 1. Often, the missing mechanism
missing at random (MAR) is a common assumption for statistical analysis in the presence of missing data and is reasonable
in many practical situations. Nevertheless, sometimes, there may be a concern that nonresponse is related to the value of
the unobserved outcome variable yi itself, even after controlling for xi. TheMARmechanism thenwould become invalid. For
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example, in the surveys about income or the history of committing, the nonresponse rates tend to be related to the values of
nonresponses. Instead of the classical assumption MAR for missing data, the present paper assumes that missing response
data are either nonignorable or not missing at random (NMAR).

Nonignorable missing is a ubiquitous existing problem in various disciplines, for example, medical research, clinical tri-
als and longitudinal studies and in recent decades, there has been a number of literatures for the analysis of nonignorable
missing values. Based on the exponential tilting model for the response probability, Kim and Yu (2011) proposed a semi-
parametric estimationmethod ofmean functionswith nonignorablemissing data and derived the

√
n-consistencywhen the

tilting parameter is either given or estimated. Zhao et al. (2013) applied the empirical likelihood to the inference of mean
functionalswith nonignorablemissing response datawhen the inverse probabilityweightedmethodswith andwithout aux-
iliary information are used, and the asymptotic properties are systematically investigated. In longitudinal study, the classical
maximum likelihood (ML) method has been extensively applied to analyze longitudinal missing data. To avoid sensitivity of
ordinaryML estimates to extreme observations or outliers, Sinha (2012) suggested a robust method in the framework of the
maximum likelihood for analyzing incomplete longitudinal data with generalized linear mixed models. Beyond that, Imai
(2009) introduced an identification strategy for average treatment effect under the nonignorable assumption to analyze
randomized experiments with a nonignorable missing binary outcome. In a sensitivity analysis, Xie et al. (2011) relaxed the
linearity assumption for response probability and provided a semiparametric approach of the generalized additive model
for analyzing nonignorable missing data. Their approach can avoid fitting any complicated semiparametric joint selection
model. Lee and Tang (2006) considered a nonlinear structural equation model with nonignorable missing covariates and
ordered categorical data, where the missingness mechanism was specified a logistic regression model.

As to nonignorable missing data, the underlying assumptions are difficult to verify in practice and the results of relevant
statistical inferencemay be sensitive to these assumptions. Under this circumstance, parameter estimation for nonignorable
nonresponse data is a challenge. To the best of our knowledge, few references focus on the inference for parameterβ in linear
regression with nonignorable missing response. The present paper focuses on this issue.

The empirical likelihood approach for constructing confidence intervals in nonparametric setting was introduced by
Owen (1988, 1990). Since then, there has been a rich body of literature about relevant statistical inference based on the
empirical likelihood technique. The empirical likelihood method owns its broad usage and widely research to a number of
important advantages. As mentioned in Hall and La Scala (1990), the empirical likelihood technique does not impose prior
constraints on the shape of the region and it does not require the construction of a pivotal quantity, besides, the region is
range preserving and transformation respecting. Moreover, they are of natural shape and orientation since the regions are
obtained by contouring a log-likelihood ratio. After that, Owen (1991) applied the empirical likelihood to linear regression
and demonstrated that the empirical log-likelihood ratio is asymptotically a χ2 variable. As to the construction of the confi-
dence interval, Zhu and Xue (2006) studied the empirical likelihood-based inference for the parameters in a partially linear
single-index model and first presented a bias correction to eliminate non-negligible bias caused by nonparametric estima-
tion so as to achieve the standard χ2-limit of the empirical likelihood function. For the missing data, Xue (2009a) developed
an empirical likelihood method to study the construction of confidence intervals and regions for the parameters of interest
in linear regression models with missing response data. Besides, Xue (2009b) elaborated the construction of the confidence
interval for responsemean based on the bias-corrected empirical likelihood ratio, where themissing response was imputed
by a kernel regression method. Qin et al. (2009) raised a unified empirical likelihood approach for the case with the number
of estimating equations greater than the number of unknown parameters.

The rest of this article is organized as follows. In Section 2, we present the construction of confidence intervals. The
asymptotic normality for the estimates of the parameters and the asymptotic properties for the proposed empirical likeli-
hood functions are investigated in Section 3. Simulation studies and a real data analysis are conducted to evaluate the finite
sample performance of the proposed estimates in Sections 4 and 5, respectively. The concluding discussions are included in
Section 6. Proofs of the asymptotic results are relegated in the Appendix.

2. Empirical likelihood-based inference

In this section, we propose three methods for the confidence interval construction of parameters in the following.

2.1. Weighted empirical likelihood

For an incomplete dataset {(xi, yi, δi), i = 1, . . . , n} with δi being the missing datum indicator with the response prob-
ability p(xi, yi):

p(xi, yi) = P(δi = 1|xi, yi).

To construct the empirical likelihood function, the following auxiliary random vector based on the inverse probability
weighted method is introduced:

zi,W := zi,W (β) =
δi

p(xi, yi)
xi(yi − xτ

i β). (2.1)
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