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a b s t r a c t

A new procedure for simultaneously finding the optimal cluster structure of multivariate
functional objects and finding the subspace to represent the cluster structure is presented.
Themethod is based on the k-means criterion for projected functional objects on a subspace
in which a cluster structure exists. An efficient alternating least-squares algorithm is
described, and the proposedmethod is extended to a regularizedmethod for smoothness of
weight functions. To dealwith the negative effect of the correlation of the coefficientmatrix
of the basis function expansion in the proposed algorithm, a two-step approach to the
proposedmethod is also described. Analyses of artificial and real data demonstrate that the
proposedmethod gives correct and interpretable results compared with existing methods,
the functional principal component k-means (FPCK) method and tandem clustering
approach. It is also shown that the proposed method can be considered complementary
to FPCK.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last few decades, due to technical advances in storing and processing data, we can obtain large amount of data at
hand. A particular case of such data is that of variables taking values into an infinite dimensional space, typically a space
of functions defined on some set T . Such data are represented by curves or functions and thus called as functional data.
Recently, it becomes easier to observe functional data in medicine, economics, psychometrics, and many others domains
(for example, see Ramsay and Silverman, 2005, for an overview).

In the framework of functional data analysis, many clustering methods have been already proposed in the literature. A
common way to proceed is to filter first, that is to approximate each function by a linear combination of a few number of
basis functions, and then to apply a classical clustering method to the resulting basis coefficients. For example, the works of
Abraham et al. (2003) and Serban andWasserman (2005) adopt the filtering approach. Another approach is a distance-based
method in which clustering algorithms based on specific distances for functional data are used. In Tarpey and Kinateder
(2003), the k-means algorithmwith the usual L2-metric distance is investigated for Gaussian processes, and they prove that
the cluster centers are linear combinations of functional principal component analysis (FPCA) eigenfunctions. In addition,
Ferraty and Vieu (2006) propose to use a hierarchical clustering algorithm combined with the L2-metric distance with the
semi-metric distance. Recent developments of clustering methods for functional data are excellently overviewed in Jacques
and Preda (in press).
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As described in Jacques and Preda (in press), recently, the other clustering methods for functional data have been
developed; the new procedure is to identify simultaneously optimal cluster structure of functions and optimal subspaces
for clustering. The use of a low-dimensional representation of functions can be of help in providing simpler and more
interpretable solutions. Actually, cluster analysis of functional objects is often carried out in combination with dimension
reduction (e.g. Illian et al., 2009; Suyundykov et al., 2010). Bouveyron and Jacques (2011) developed a model-based
clusteringmethod for functional data that finds cluster-specific functional subspaces. Yamamoto (2012) proposed amethod,
called functional principal component k-means (FPCK) analysis, which attempts to find an optimal common subspace for
the clustering of multivariate functional data. The method aims to overcome the problem of tandem clustering (Arabie and
Hubert, 1994) for functional data, in which first a dimension-reduction technique, such as FPCA (e.g. Ramsay and Silverman,
2005; Besse and Ramsay, 1986; Boente and Fraiman, 2000), is applied and subsequently the ordinary clustering algorithm
is used for the principal component scores. Note that Gattone and Rocci (2012) have also developed a subspace clustering
procedure that is essentially equivalent to FPCK, though their method deals with univariate functional data.

The methods of Bouveyron and Jacques (2011) and Yamamoto (2012) can be classified into subspace clustering
techniques (Timmerman et al., 2010; Vidal, 2011) for functional data. Like subspace clustering techniques for multivariate
matrix data, there are two types of methods for functional data: one intends to find a subspace specific to each cluster
(Bouveyron and Jacques, 2011), and the other intends to find a subspace that is common to all clusters (Yamamoto, 2012).
Here, we focus on the common subspace clustering.

Yamamoto (2012) shows that in various cases the FPCK method can find both an optimal cluster structure and the
subspace for the clustering. The FPCK method, however, has a drawback caused by the definition of its loss function; if no
substantial correlation is present in the part of functions which is informative on a cluster structure, FPCK fails in obtaining
the cluster structure and a subspace for the structure. The drawback will be explained in more detail in the next section. In
this paper, to overcome this drawback,we present a newmethod that simultaneously finds the cluster structure and reduces
the dimension of multivariate functional objects. It will be shown that the proposedmethod has amutually complementary
relationship with the FPCK method.

This paper is organized as follows. Section 2 defines the notation used in this paper and discusses the drawbacks of FPCK
analysis. In Section 3, a new clustering and dimension reductionmethod for functional objects is described, and an algorithm
to implement the method is proposed. In Section 4, the performance of the proposed method is studied using artificial data,
and an illustrative application to real data is presented in Section 5. Finally, in Section 6, we conclude the paper with a
discussion and make recommendations for future research.

2. Notation and the drawbacks of the FPCK method

2.1. Notation

First we present the notation that we will use throughout this paper. Here, the same notations as Yamamoto (2012)
will be used for ease of explanation. Suppose that the nth functional object (n = 1, . . . ,N) with P variables is represented
as xn(t) = (xnp(t) | p = 1, . . . , P) with a domain T ⊂ Rd. For simplicity, we write xn = (xn(t) | t ∈ T ) to denote
the nth observed function. In the rest of paper, for general understanding of the problem, we consider the single-variable
case, i.e., P = 1; in this case, the suffix p in the above notation will be omitted. The multivariate case will be described
in Appendix A. Let L = L2(T ), which is the usual Hilbert space of function f from T to R. Here, the inner product for any
x, y ∈ L is defined as

⟨x, y⟩ :=


T
x(t)y(t)dt,

and for any x ∈ L , ∥x∥ := ⟨x, x⟩1/2 < ∞.
For simplicity, we shall assume that the mean function of the xn’s has been subtracted, so without loss of generality, we

assume that
N

n=1 xn(t) = 0 for all t ∈ T .
In this paper, we simultaneously find an optimal projection of the data x = (x1, . . . , xN)′ onto a low-dimensional

subspace and a cluster structure. Let V = {vl}(l = 1, . . . , L < ∞; vl ∈ L ) be orthonormal basis functions of the projected
low-dimensional subspace. As with Yamamoto (2012), we call vl a weight function. In addition, let Pv be an orthogonal
projection operator from the functional data space L onto the subspace Sv , which is spanned by V . Let U = (unk)N×K be
cluster assignment parameters, where unk equals one if subject n belongs to cluster k, and zero, otherwise. Let Nk be the
number of subjects that are assigned to the kth cluster, and for all k, x̄k := N−1

k
N

n=1 unkxn, which is the centroid of the kth
cluster. In this paper, we consider the crisp clustering, in which each object is assigned to only one group.

A basis function expansion approach is used in many functional data analysis models. Let us approximate an object xn
using a basis function, as follows:

xn ≈
M

m=1

gnmφm = φ′gn,
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