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a b s t r a c t

Linear mixed models are especially useful when observations are grouped. In a high
dimensional setting however, selecting the fixed effect coefficients in these models is
mandatory as classical tools are not performing well. By considering the random effects as
missing values in the linear mixedmodel framework, a ℓ1-penalization on the fixed effects
coefficients of the resulting log-likelihood is proposed. The optimization problem is solved
via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for
the number of parameters p to be larger than the total number of observations n and does
not require the inversion of the sample n×n covariancematrix. The proposed algorithmcan
be combined with any variable selection method developed for linear models. A variant of
the proposed approach replaces the ℓ1-penalization with a multiple testing procedure for
the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both
methods are implemented in the MMS R-package, and are shown to give very satisfying
results in a high-dimensional simulated setting.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Themore extensive use of new technologies such as high-throughput DNA/RNA chips or RNA sequencing in biology gen-
erates an increasing number of highly dimensional data sets where the number of parameters p is much greater than the
number of observations n. Consequently, the high dimensional framework generally means that the problem of parameters
estimation cannot be solved. In order to address this curse of dimensionality, various constraints have been proposed in lin-
ear models. Most of them aim for a parsimonious model where many parameters are set to zero (sparse constraints), or use
of a well-conditioned variance matrix on the observations. Many studies have addressed the problem of variable selection
by using a linear model of the form Y = Xβ + ϵ, where X is an n× pmatrix containing the observations and ϵ is a n-vector
of i.i.d. random and usually Gaussian variables. One of the oldest methods is the Akaike Information Criterion (AIC), which
is a penalization of the log-likelihood by a function of the number of parameters included in the model. More recently, the
simple and powerful Lasso (Least Absolute Shrinkage and Selection Operator) method (Tibshirani, 1996) revolutionized the
field. The Lasso works by applying a ℓ1-penalization on the least squares estimate which shrinks some coefficients to ex-
actly zero. Various extensions exist for the Lasso, for example group Lasso (Yuan and Lin, 2007), adaptive Lasso (Huang et al.,
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2008) and a more stable version known as Bo-Lasso (Bach, 2009). However, penalizing the likelihood is not the only way to
perform variable selection.

Indeed, statistical testing can also be used to determine the relevance of each parameter as in the False Discovery
Rate (Benjamini and Hochberg, 1995; Bunea et al., 2006), or as in a more recent procedure that appears to provide better
results in terms of variable selection (Rohart, 2011).

In all the previously described methods, observations are considered to be independent and identically distributed.
These methods are therefore no longer appropriate when structured information, such as family relationships or common
environmental effects, becomes available. In a linear mixed model, the observations are assumed to be clustered. The
variance–covariance matrix V of the observations is therefore no longer diagonal but, in some cases, it is block diagonal. In
the literature, most reports of linear mixed models relate to the estimation of variance components, using either maximum
likelihood estimation (ML) (Henderson, 1973, 1953), or restricted maximum likelihood estimation (REML) which accounts
for the loss in degrees of freedom due to fitting fixed effects (Patterson and Thompson, 1971; Harville, 1977; Henderson,
1984; Foulley et al., 2006). However, both methods assume that each fixed effect and each random effect is relevant. This
assumptionmight bewrong and result in falsely estimatedparameters. Thismight be especially the case in high-dimensional
analysis. Contrary to linear models, the problem of selecting the fixed effect coefficients in a linear mixed model framework
has rarely been addressed in a high dimensional setting.

Both Bondell et al. (2010) and Ibrahim et al. (2011) used penalized likelihoods to perform selection of both fixed and
random effects. Bondell et al. (2010) introduced a constrained EM algorithm to solve the optimization problem, which
becomes computationally complex in a high-dimensional context (it should be noted that their simulation studies were
only designed for a low dimensional setting). Moreover, the methods of both Bondell et al. (2010) and Ibrahim et al. (2011)
rely on Cholesky decompositions and, as pointed out by Müller et al. (2013), these decompositions are dependent on the
order in which the random effects appear and are not permutation invariant (Pourahmadi, 2011). In the present paper, we
primarily focus on analyzing data sets with only a few random effects and we therefore do not address the selection of both
fixed and random effects.

Schelldorfer et al. (2011) have studied the selection of fixed effects in a high dimensional setting. Their paper introduced
an algorithm based on ℓ1-penalization of the maximum likelihood estimator in order to select the relevant fixed effect
coefficients. As highlighted in their paper, their algorithm relies on the possibly time-consuming process of inverting the
variance matrix of the observations V .

The objective of this paper is two-fold. The first is to provide a more efficient way to select fixed effects in a linear mixed
model. We consider the random effects as missing data, as previously described in Bondell et al. (2010) and Foulley (1997),
and we introduce a ℓ1-penalization on the log-likelihood of the complete data. A similar approach is studied in Groll and
Tutz (2014) in the framework of Generalized Linear Mixed Models. We propose a multicycle Expectation Conditional Max-
imization algorithm (ECM) with convergence properties (Foulley, 1997; McLachlan and Krishnan, 2008; Meng and Rubin,
1993) to solve the optimization problem and provide theoretical results when the variances of the observations are known.
The second objective is to increase the performance of variable selection. Due to its step design, the ECM algorithm can be
combined with any variable selectionmethod built for linear models. We propose to use a multiple testing procedure intro-
duced in Rohart (2011) instead of the ℓ1-penalization of the maximum likelihood estimator. We show that this procedure
exhibits a higher percentage of recovery of the exact set of variables, a lower false discovery rate and a better estimation of
β, which induces a reduced mean squared error. As the selection of fixed effects in a high-dimensional linear mixed model
framework has been rarely addressed before, we will mainly compare our results to those of Schelldorfer et al. (2011).

The proposed approach is then applied to a real data set from a project in which hundreds of pigs were studied, the
aim being to shed light on the relationships between some of the phenotypes of interest and metabolomic data (Rohart
et al., 2012). Linear mixed models are appropriate in this case because observations are in fact repeated data collected in
different environments (groups of animals reared together in the same conditions). Some individuals were also genetically
related, introducing a family effect. The data set consisted of 506 individuals from3 breeds, 8 environments and 157 families,
metabolomic data contained p = 375 variables, and the phenotype investigated was the Daily Feed Intake (DFI).

This paper is organized as follows. We first introduce the linear mixedmodel and its objective function to solve. We then
describe the multicycle ECM algorithm used to solve the optimization problem. In Section 3, the algorithm described in
Section 2 is extended to be usedwith any variable selectionmethod developed for linearmodels.We assess the performance
of the approach on a simulation study and demonstrate that the combination of this new algorithm with a multiple testing
procedure for variable selection greatly improves the False Discovery Rate (Section 4). Finally, in Section 5, we illustrate the
proposed approach on the metabolomic pigs data set.

2. Selection with ℓ1-penalization

Let us introduce some notation that will be used throughout the paper. Var(a) denotes the variance–covariance matrix
of the vector a. For all a > 0, let Ia be the identity matrix of Ra. For A ∈ Rn×p, denote I a subset of {1, . . . , n} and J a subset of
{1, . . . , p}. Let AI,J , A.,J and AI,. denote submatrices of A respectively composed of elements of Awith rows in I and columns
in J , columns in J and all rows, and rows in I and all columns. Moreover, for all a > 0, b > 0, denote 0a to be the vector of
size a in which all coordinates are 0 and 0a×b to be the zero matrix of size a × b. Let us denote |A| the determinant of the
matrix A.
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