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a b s t r a c t

Several univariate proportional reversed hazard models have been proposed in the litera-
ture. Recently, Kundu and Gupta (2010) proposed a class of bivariate models with propor-
tional reversed hazard marginals. It is observed that the proposed bivariate proportional
reversed hazard models have a singular component. In this paper we introduce the mul-
tivariate proportional reversed hazard models along the same manner. Moreover, it is ob-
served that the proposedmultivariate proportional reversed hazardmodel can be obtained
from the Marshall–Olkin copula. The multivariate proportional reversed hazard models
also have a singular component, and their marginals have proportional reversed hazard
distributions. The multivariate ageing and the dependence properties are discussed in de-
tails. We further provide some dependence measure specifically for the bivariate case. The
maximum likelihood estimators of the unknown parameters cannot be expressed in ex-
plicit forms. We propose to use the EM algorithm to compute the maximum likelihood
estimators. One trivariate data set has been analysed for illustrative purposes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

If X is an absolutely continuous positive random variable with the probability density function (PDF) g(·) and the
cumulative distribution function G(·), then the hazard function of X is defined as

h(t) =
g(t)

1 − G(t)
; t ≥ 0.

The hazard function plays a very important role in the reliability and survival analysis. Extensive work on different aspects
of hazard function has been found in the statistical literature, see for example Meeker and Escobar (1998).

Recently, proportional reversed hazard model has received considerable attention since it was introduced by Block et al.
(1998). If X is an absolutely continuous positive random variable as defined above, then the reversed hazard function of X
is defined by

r(t) =
g(t)
G(t)

; t ≥ 0.

Similar to the hazard function, the reversed hazard function also uniquely characterize a distribution function. The reversed
hazard function has been used quite extensively in forensic studies and some related areas. Interested readers may look at
the original article of Block et al. (1998) in this respect.
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The class of proportional reversed hazard models can be described as follows. If F0(·) is any distribution function, then
define the class of distribution functions F(·; α) for α > 0 as

F(t; α) = (F0(t))α.

It can be easily seen that F(·; α) is a proper distribution. From the definition of the proportional reversed hazard function,
it is immediate that if F0(·) has a reversed hazard function r0(·), then F(·; α) has the proportional reversed hazard function
αr0(·). Recently several proportional reversed hazard models have been introduced by several authors, and their properties
have been investigated, see for example Crescenzo (2000), Kundu and Gupta (2004), Gupta and Gupta (2007), Gupta and
Kundu (1999, 2007), Sarhan and Kundu (2009) and the references cited therein.

Kundu and Gupta (2010) recently introduced a bivariate distribution with proportional reversed hazardmarginals. It has
several interesting properties, and it has been used quite successfully to analyse bivariate lifetime data. Themain aim of this
paper is to introduce multivariate (p-dimensional) distributions with proportional reversed hazard marginals. It has been
done using the same maximization process from p + 1 independent proportional reversed hazard models. It introduces
positive dependence among the variables. The proposed multivariate proportional reversed hazard model can be obtained
from theMarshall–Olkin (MO) copula also, using the proportional reversed hazardmodel as themarginals. Using the copula
properties, several dependence measures like Kendall’s τ , Spearman’s ρ can be computed specifically for the bivariate
proportional reversed hazards distribution.

It is observed that for q < p dimensional subset of the p-variate proportional reversed hazards distribution is a q-variate
proportional reversed hazards distribution. The cumulative distribution function of the q-variate proportional reversed
hazards distribution can be written in a very convenient form. The decomposition of the absolutely continuous part and the
singular part is clearly unique. We provide the joint probability density function of the absolute continuous part explicitly.
We discuss some distributional, ageing and dependence properties for the proposed p-variate distribution.

Itmay bementioned that the importance of the ageing anddependence notions has beenwell established in the statistical
literature, see for example Lai and Xie (2006). Inmany reliability and survival analysis applications it has been observed that
the components are often positively dependent in some stochastic sense. Hence the derivation of ageing and dependence
properties for anymultivariate distribution has its own importance. Similarly, the extremeorder statistics, theminimumand
maximum play a great role in several statistical applications, particularly, where the components have some dependence.
For example, the minimum and maximum order statistics play important roles in the competing risks model, and the
complementary risksmodel, respectively. So the distributions of both extreme order statistics for the proposedmultivariate
distributions and some stochastic ageing results are studied in this paper.

It is observed that themaximum likelihood estimators (MLEs) of the unknown parameters cannot be obtained in explicit
form, as expected. Non-linear optimization problem needs to be solved to compute the MLEs. We propose to use the EM
algorithm to compute the MLEs, and we provide the implementation details for several multivariate proportional models.
Finally, we analyse one real data set for illustrative purposes.

Rest of the paper is organized as follows. In Section 2, we briefly discuss about the different dependence concept, some
basic copula properties and provide different examples of proportional reversed hazards models which are available in
the literature. In Section 3, we introduce the multivariate proportional reversed hazards models. Different dependence
and ageing properties are discussed in Section 4. In Section 5, we provide different dependence measures for bivariate
proportional reversed hazardsmodels. In Section 6, we apply the EM algorithm. The analysis of a data set has been presented
in Section 7, and finally we conclude the paper in Section 8.

2. Preliminaries

2.1. Dependence and stochastic order

Several notions of positive or negative dependence for a multivariate distribution, of varying degree of strengths, are
available in the literature, see for example Boland et al. (1996), Colangelo et al. (2005, 2008) and see the references cited
therein.

A random vector X is said to be positively lower orthant dependent (PLOD) if the joint cumulative distribution function
of X satisfies the following property;

FX (x1, . . . , xp) ≥

p
i=1

Fi(xi), ∀x = (x1, . . . , xp), (1)

here Fi’s for i = 1, . . . , p, are themarginal distribution functions. Furtherwewill be using the following notation. For x ∈ Rp,
a phrase such as ‘non-decreasing in x’, means non-decreasing in each component xi, for i = 1, . . . , p. If A is any subset of
{1, . . . , p}, then XA denote the vectors, (Xi|i ∈ A), similarly, xA is also defined. The following definition are from Brindley and
Thompson (1972), see also Joe (1997).

A p-dimensional random vector X is said to be left tail decreasing (LTD), if

P(XA2 ≤ xA2 |XA1 ≤ xA1) (2)



Download English Version:

https://daneshyari.com/en/article/6869853

Download Persian Version:

https://daneshyari.com/article/6869853

Daneshyari.com

https://daneshyari.com/en/article/6869853
https://daneshyari.com/article/6869853
https://daneshyari.com

