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h i g h l i g h t s

• Two measures are proposed for assessing continuous and discrete variables in LCA.
• Both measures are either in closed form or straightforward to compute.
• Both measures perform reasonably well compared to existing measures such LRT and Fst.
• Both absolute and relative interpretations of one measure are possible.
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a b s t r a c t

The latent class model provides an important platform for jointly modeling mixed-mode
data—i.e., discrete and continuous data with various parametric distributions. Multiple
mixed-mode variables are used to cluster subjects into latent classes. While the mixed-
mode latent class analysis is a powerful tool for statisticians, few studies are focused
on assessing the contribution of mixed-mode variables in discriminating latent classes.
Novel measures are derived for assessing both absolute and relative impacts of mixed-
mode variables in latent class analysis. Specifically, the expected posterior gradient and
the Kolmogorov variation of the posterior distribution, as well as related properties are
studied. Numerical results are presented to illustrate the measures.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Heterogeneous data types have become commonplace in many sciences. In the medical sciences, clinical studies often
collect data that are continuous (e.g., blood pressure), binary (whether or not the subject has diabetes), ordinal (severity
level of a disease), categorical (medication used), and other types such as count and time-to-event. The identification of
clinically meaningful phenotypes in the population using a heterogeneous data type is thus an important area of research.
Everitt (1988, 1993) referred to heterogeneous data types as mixed-mode data in the context of latent class and mixture
analysis, in which multiple data types are used as indicators for putting similar objects into groups (see also Lawrence and
Krzanowski, 1996; Vermunt and Magidson, 2002). The terms latent class model and mixture are used interchangeably. The
idea here is to cluster a vector of mixed-mode responses Y = (Yi) for indicators i = 1, . . . ,m into S distinct latent classes
Z = 1, . . . , S. There are at least two general approaches for mixed-mode latent class analysis (MM-LCA). The first approach
is to relate the manifested categorical response to an underlying multivariate Gaussian distribution such that continuous
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normal variables and categorical variables can be jointly modeled (Joreskog, 1973; Shi and Lee, 2000). As pointed out by
Dunson (2003), the underlying Gaussian approach has limitations, one ofwhich is that it cannot easily accommodate general
data types such as counts. An alternative is to use the generalized linear mixed-model approach proposed by Sammel et al.
(1997) and later extended by Moustaki and Knott (2000), Dunson (2003), Daniels and Normand (2006), Yang and Dunson
(2010), and Cai et al. (2011). This approach can accommodate any mixture of outcomes from an exponential family. Under
the assumption of conditional independence given latent class Z , the likelihood for an individual subject in an MM-LCA can
be expressed as:

f (Y|θ) =

S
z=1

αz

m
i=1

piz(yi|θz), (1)

where θ contains the vector of parameters θz for each individual class z, which has a prior probability αz = p(Z = z). Within
an exponential family framework, different link functions can be specified for the conditional distribution piz for different
data types.

One question that arises from the generalized mixed-model approach for latent class analysis and latent variable in
general is how the different types of data ‘‘impact’’ the likelihood. It is possible that one data type ‘‘overwhelms’’ another
data type in the likelihood and becomes dominant in defining the structure of the latent class model. Because data values
are not measured on the same scale, it is not easy to promptly assess the impact of a variable on the overall likelihood. This
question is directly related to a second question: if only a limited number of mixed-mode indicators can be included in a
latent class analysis, which variables should be selected for maximally ‘‘discriminating’’ between the classes? Interestingly,
the latter question can also be reformulated as a variable-selection problem and solved by a search algorithm using criteria
such as the BIC (Raftery and Dean, 2006; Dean and Raftery, 2010).

Twomeasures are proposed for assessing a variable’s contribution to the classification of latent classes. In LCA class labels
are not known a priori; the term classification here refers to the extent to which a variable contributes to discriminating the
classes, or in the case the class label is known (e.g., in a simulation setting) the accuracy in retrieving class membership. The
firstmeasure, the expectedposterior gradient (EPG),measures the absolute contribution of a variable toMM-LCA. The second
measure, based on the Kolmogorov variation of the posterior distribution (KVP), can be interpreted in terms of the relative
contribution of a variable by comparing classification accuracieswith andwithout the variable in theMM-LCA. Interestingly,
both measures can be related to the statistical distance between the prior distribution p(z) and the posterior distribution
p(z|y). There are several advantages in using the EPG and KVP. First, they both have strong theoretical foundations, which
will be described in the following two sections under the heading ‘‘Justification of measures’’. Second, the measures can be
universally applied to all kinds of mixed-mode data—continuous, discrete, and count data. Furthermore, computationally
the two measures are straightforward to compute and closed form solutions are available for EPG. For the remainder of the
paper, Section 2 describes the EPG measure, and the procedure of how the measure can be derived and used in practice.
Section 3 describes KVP and specifically its relation to the total variation measure, which is commonly used in the image
processing literature. In Section 4, two numerical examples of MM-LCA are provided to illustrate the proposed methods. A
brief discussion is given in Section 5.

2. Expected posterior gradient for variable assessment

Consider an S-class latent class model that includes both continuous and discrete random variables, Y = (Y1, . . . , Ym),
with class-conditional distributions of normal, exponential, Gamma, Poisson, ordinal, or binomial distributions, given the
latent random variable Z ∈ S, S = {1, . . . , S}. Class-conditional independence is assumed among all the variables—i.e.,

p(Y1 = y1, . . . , Ym = ym|Z = z) =

m
i=1

p(Yi = yi|Z = z). (2)

Denote the posterior probability p(Z = z|Y1 = y1, . . . , Ym = ym) by τz , the class-conditional probability p(Yi = yi|Z = z)
by πyi|z , and let πy|z =

m
i=1 πyi|z . These quantities are related by the Bayes formula:

τz =
αzπy|z

p(y)
, (3)

where p(y) is the marginal probability of observing the outcome vector, y = (y1, . . . , ym), and

p(y) =

S
z=1

αzπy|z . (4)

The EPG measure for assessing the impact of variable yi on the MM-LCA is denoted by Bi and its definition is given by:

Bi =


z∈S

αz

Ey 
∂ log(τz)

∂yi

 . (5)
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