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a b s t r a c t

Identification of active factors in supersaturated designs (SSDs) has been the subject of
much recent study. Although several methods have been previously proposed, a solution
to the problem beyond one or two active factors still seems to be unsatisfactory. The
smoothly clipped absolute deviation (SCAD) penalty function for variable selection has nice
theoretical properties, but due to its nonconvex nature, it poses computational issues in
model fitting. As a result, so far it has not shown much promise for SSDs. Another issue
regarding its inefficiency, particularly for SSDs, has been the method used for choosing the
SCAD sparsity tuning parameter. The selection of the SCAD sparsity tuning parameter using
the AIC and BIC information criteria, generalized cross-validation, and a recently proposed
method based on the norm of the error in the solution of systems of linear equations are
investigated. This is performed in conjunction with a recently developed more efficient
algorithm for implementing the SCAD penalty. The small sample bias-corrected cAIC is
found to yield a model size closer to the true model size. Results of the numerical study
and real data analyses reveal that the SCAD is a valuable tool for identifying active factors
in SSDs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the preliminary phase of experiments in industry, simulation experiments or exploratory studies, it is often necessary
to investigate a large number of factors. The main purpose of such experiments is to identify a few important factors with
non-negligible effects (effect sparsity) from a large number of potentially relevant factors. Due to constraints of cost and
time, the number of runs or experiments has to be keptmuch smaller than the number of potential factors. Designs requiring
fewer runs than the number of effects to be estimated are called supersaturated designs. If p is the number of factors and n
is the number of runs, then for a 2-level supersaturated design, n < p + 1. Effect sparsity and absence of interactions in
general form the basis of these experiments. Sometimes few interactionsmay also have to be entertained as potential effects.
In that situation at least one of the main effects from the interactions should be present in the model. This characteristic of
the model is known as ‘‘effect heredity’’ and will be discussed in Section 4.

Although the history of SSDs dates back to Satterthwaite (1959) and to Booth and Cox (1962), many developments in
this area have taken place over the last two decades. Renewed interest in SSDs was initiated by Lin (1993) and Wu (1993).
Further constructions of SSDs are due to Nguyen (1996); Cheng (1997); Butler et al. (2001); Liu and Dean (2004), among
several others. SSDs for factors with more than two levels have also been studied in the literature. For further details we
refer to Gilmour (2006) and Georgiou (2014).
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The analysis of SSDs is complicated due to the inherent non-full rank nature of the design matrix, and the fact that the
columns of themodelmatrix are correlated. As a result, the effects of different factors are aliasedwith one anothermaking it
very difficult to identify the non-negligible or active factors correctly. Wu (1993); Westfall et al. (1998) and Liu et al. (2007)
studied classical stepwise and all subset regression methods for the analysis of SSDs. Chipman et al. (1997) developed a
Bayesian approach based on a stochastic search variable selection (SSVS) method. Beattie et al. (2002) proposed a two-stage
Bayesian model selection strategy, combining SSVS and the intrinsic Bayes factor method. Li and Lin (2002) applied the
shrinkage estimation and selectionmethod of Fan and Li (2001) with the SCAD penalty. Zhang et al. (2007) introduced a new
method, called PLSVS, based on partial least squares. Koukouvinos and Mylona (2008) proposed a method for SSDs having a
specific block orthogonal structure,while Koukouvinos andMylona (2009) applied a group screeningmethod for the analysis
of a class of optimalmulti-level SSDs. Phoa et al. (2009) applied theDantzig selector (DS)methodof Candes andTao (2007) for
analyzing SSDs and, through simulations, demonstrated it to be more efficient than the method discussed by Chipman et al.
(1997), the SCADmethod of Li and Lin (2002), and PLSVSmethod of Zhang et al. (2007). Marley andWoods (2010) proposed
a model averaging approach and compared it to the forward selection and DS methods. Based on an extensive simulation
study, they found the performance of DS to be better than the other two methods overall. They also concluded that in SSDs,
(a) the number of factors should be less than twice the number of runs, and (b) the number of runs should be at least three
times the number of active effects. Edwards and Mee (2011) proposed a global model randomization test with all subset
regression. Their findings also support Marley andWoods (2010) conclusions in (a) and (b) above. Koukouvinos et al. (2011)
studied the use of information theoretic entropymeasures for analysis of SSDs under the set-up of generalized linearmodels.

Kim et al. (2008) proved that, under effect sparsity, the SCAD estimator possesses the oracle property even in high-
dimensional settingswhere the number of covariates p ismuch larger than the sample size n. The oracle propertymeans that
asymptotically the SCAD estimator is obtained as if the non-active effects were known in advance. More recently, Breheny
and Huang (2011) proposed a coordinate descent algorithm for the SCAD optimization problem and showed its superiority
over the other algorithms. In this paper, we study the efficacy of SCAD for identifying active effects in SSDs utilizing the
algorithm of Breheny and Huang (2011). Unlike the two-stage SCAD procedure of Li and Lin (2002), the method discussed
can be completed in the first stage itself and does not require good initial estimates of parameters. Cross-validation (CV)
and generalized cross-validation (GCV) of Craven and Wahba (1979) are widely used for controlling the extent of SCAD
penalty. In CV, some observations are left out for the purpose of validating the fitted model, while the remaining part of the
sample (training sample) is used formodel fitting. In small sample setting of SSDs, the loss of even one observation can lead to
substantial adverse effect on the quality of the fittedmodel. Furthermore, loss of an observation, in other words, a treatment
combination, jeopardizes the optimality properties of a SSD and hence the quality of the fitted model. Thus, CV has limited
utility for analyzing SSDs and is not discussed further in this paper in view of its poor performance in our numerical study.

We propose the use of the Akaike (AIC), corrected Akaike (cAIC), and Bayesian (BIC) information criteria in conjunction
with the algorithm of Breheny and Huang (2011) to regulate the sparsity in SCAD penalty. Wang et al. (2007) showed that
GCV leads to nonignorable overfitting of the model even if the sample size goes to infinity. They also showed that AIC
provides a good approximation to log (GCV). In our numerical study, the performance of GCV in terms of identifying the
correct model was similar to AIC. However, GCV was found to yield model size somewhat larger than that obtained using
AIC. In several cases the GCVmean model size was larger by 0.5–0.6. Since our results are in line withWang et al. (2007), to
avoid redundancyGCV results are not included in the tables in Sections 3 and4. The recently proposedmethodof Androulakis
et al. (2011), here referred to as AKM, is also studied. The results and the findings of Phoa et al. (2009) andMarley andWoods
(2010) lead us to include DS in our numerical study. Like Marley and Woods (2010), our numerical results also show that
the performance of the methods tends to deteriorate as the magnitude of effect sizes is made smaller. Therefore, for a more
informative comparison, we study the performance of the methods especially for relatively smaller effect sizes.

Section 2 provides a brief overview of the estimation methods considered in this paper. The methods are compared
through simulation in Section 3. Yuan et al. (2007) used the LARS algorithm of Efron et al. (2004) and proposed an extension
to address effect heredity in model selection. They explicitly mention that despite its nice theoretical properties, the SCAD
approach does not incorporate the effect heredity principle. In Section 4, the efficacy of SCAD for effect heredity models is
studied numerically. Note that the extensive numerical study of effect heredity models has not received much attention in
the literature. The proposed methods are illustrated on some real world data in Section 5. These real examples also serve to
further illustrate the efficacy of SCAD for effect heredity models. Finally, some concluding remarks are made in Section 6.

2. Penalizing methods and information criteria

In this section we briefly describe the SCADmethod under AIC, cAIC, BIC and AKM criteria, and the DS method. Let X0 be
the n × k design matrix of +1’s and −1’s for two-level factors and 1n be the n × 1 vector of 1’s. Consider the linear model

y = Xβ + ϵ, (1)
where y is the n × 1 response vector, X = [1n, X0] is the n × (k + 1) model matrix, β = (β0, β1, . . . , βk)

′ is the usual
vector of regression parameters, and ϵ is the vector of independently distributed normal random errors with mean zero and
constant variance σ 2. Note that k is greater than p when some interactions may also be active, where p is the number of
factors. Under model (1), the DS of the regression coefficients β is obtained from

min
β∈Rk

∥β∥l1
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