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a b s t r a c t

The important problems of variable selection and estimation in nonparametric additive
regression models for high-dimensional data are addressed. Several methods have been
proposed to model nonlinear relationships when the number of covariates exceeds the
number of observations by using spline basis functions and group penalties. Nonlinear
monotone effects on the response play a central role in many situations, in particular
in medicine and biology. The monotone splines lasso (MS-lasso) is constructed to select
variables and estimate effects usingmonotone splines (I-splines). The additive components
in themodel are represented by their I-spline basis function expansion and the component
selection becomes that of selecting the groups of coefficients in the I-spline basis function
expansion. A recent procedure, called cooperative lasso, is used to select sign-coherent
groups, i.e. selecting the groups with either exclusively non-negative or non-positive
coefficients. This leads to the selection of important covariates that have nonlinear
monotone increasing or decreasing effect on the response. An adaptive version of the MS-
lasso reduces both the bias and the number of false positive selections considerably. The
MS-lasso and the adaptiveMS-lasso are comparedwith other existingmethods for variable
selection in high dimensions by simulation and the methods are applied to two relevant
genomic data sets. Results indicate that the (adaptive) MS-lasso has excellent properties
compared to the other methods both in terms of estimation and selection, and can be
recommended for high-dimensional monotone regression.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Along with the massive production of large data sets within most areas of science and technology, methods for high
dimensional regression have become increasingly important. When the number of predictors P is large compared to the
sample size n, penalized regression methods handle the dimensionality problem by adding a penalty to the negative log-
likelihood to be minimized. The lasso (Tibshirani, 1996) and its many variants (Zou, 2006; van de Geer et al., 2011; Yuan
and Lin, 2006; Zou and Hastie, 2005; Meinshausen, 2007) have the advantage of setting some of the regression coefficients
to zero, thus producing a sparse solution. Recently, nonparametric methods for high-dimensional regression have started
to emerge. Recent papers (Avalos et al., 2007; Meier et al., 2009; Huang et al., 2010; Ravikumar et al., 2009) consider a
generalized additive model (GAM) (Hastie and Tibshirani, 1990) in combination with spline approximations. Given the
observations (yi, xi), i = 1, . . . , n, where yi is the response and xi = (xi1, . . . , xiP)t is the vector of covariates for observation
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i, the additive model is given as

yi = β0 +

P
j=1

g0
j (xij) + ϵi. (1)

Here β0 is the intercept, the g0
j s are unknown functions to be estimated and ϵi is the independent random error with

mean zero and variance σ 2. We assume Eg0
j (xj) = 0, for 1 ≤ j ≤ P , where now xj = (x1j, . . . , xnj)t , to ensure unique

identification of the g0
j s. In Avalos et al. (2007), Meier et al. (2009), Bühlmann and van de Geer (2011), Huang et al. (2010)

and Ravikumar et al. (2009), each nonparametric component g0
j is represented by a linear combination of spline basis

functions and the problem can be viewed as a group lasso problem (Yuan and Lin, 2006) by selecting groups of spline basis
functions representing relevant covariates. Covariates are often represented by B-splines due to their flexibility andminimal
assumptions with respect to the form of function to be estimated. Combined with the group lasso, the framework becomes
a highly flexible alternative to (standard) linear lasso-type methods.

Our aim is to construct a new method for high dimensional regression which is nonparametric and flexible as above,
but which can be restricted to select and estimate monotone functions g0

j only. In certain bio-medical applications it is
important to assume that the relationship between an explanatory variable and the outcome is monotonically increasing or
decreasing. Actually, every time linear regression is applied, an implicit assumption of monotonicity is made. For example,
monotone, but not necessarily linear relations typically appear for dose–response data. It is also reasonable to assume
that the relationship between a disease and a risk factor is monotone, but not necessarily linear (Raftery and Richardson,
1996).

There has been a major effort in developing methods for monotone regression beyond the strictly linear regression
models. In simple regression problems, monotone increasing relationships are often modeled through isotonic regression
(Barlow et al., 1972; Robertson et al., 1988). Additive isotonic models, assuming that each component effect in the additive
model is isotonic, were presented in Bacchetti (1989). However, most literature on monotone and isotonic regressions
is limited to low dimensions. Very recently, one important contribution has appeared for monotone regression in high
dimensions. Fang and Meinshausen (2012) propose Lasso Isotone (liso), combining estimation of nonparametric isotonic
functions with ideas from sparse high-dimensional regression in an additive isotonic regression model. This is, to our
knowledge, the only method feasible for monotone high-dimensional problems. Using an adaptive liso approach, Fang
and Meinshausen (2012) also present a way of fitting the model without assuming that all effects are either increasing or
decreasing, thus allowing for component effects of different signs. In this paper we develop another, substantially different,
tool for the same purpose.

Isotonic regression is probably the best known method for preserving monotonicity, but has the disadvantage of
producing step functions, which often have little biological plausibility, instead of smooth functions. For simple regression,
it is possible to use an additional smoothing procedure in a second step to obtain a smooth function (He and Shi,
1998). Tibshirani et al. (2011) proposed nearly-isotonic regression which involves a penalty term controlling the level of
monotonicity compared to the goodness of fit.

Another way of preserving monotonicity is to fit a smooth monotone function via monotone regression splines (Ramsay,
1988; He and Shi, 1998). While He and Shi (1998) proposed monotone B-spline smoothing based on a constrained least
absolute deviation principle, Ramsay (1988) introduced integrated splines (I-splines), which essentially are integrated
versions of M-splines that in combination with strictly positive coefficients will produce monotone increasing smooth
functions. I-splines have previously been used in connection with a boosting technique to do monotonic regression in a
multivariate model in Tutz and Leitenstorfer (2007). Meyer (2008) also considers shape-restricted regression splines by
means of I-splines, but only in the one-dimensional case.

In this paper a new approach to fit nonparametric additive models under the assumption that each component effect
g0
j (x) is monotone is proposed. The monotone splines lasso (MS-lasso) combines the idea of I-splines with the cooperative

lasso (Chiquet et al., 2012), and is feasible in high-dimensional settings where the number of covariates P can exceed the
number of observations n. The cooperative lasso is a lasso method where known groups of covariates are treated together,
but differs from the standard group lasso (Yuan and Lin, 2006) in that it assumes that the groups are sign-coherent. That
is, the covariates inside a group are cooperating, so either the linear coefficients are all nonpositive, all nonnegative or all
null inside a group. This can be combined with monotone I-splines by letting each covariate, represented via an I-spline
basis, constitute a group in the cooperative lasso. Thus the MS-lasso fits the additive nonparametric regression model with
components that can be either nondecreasing, nonincreasing or of no effect. The important advantages of the MS-lasso are
that the monotone functions g0

j can be either monotone increasing or decreasing in the same model, and that it is fitting
smoothmonotone functions to each g0

j . In this way it is more flexible than the linear model, but more restrictive than purely
nonparametric methods without any shape constraints. The method is also biologically more relevant than the adaptive
liso, in that smooth representations of the functions are immediately obtainable. A two-step estimator is also proposed, the
adaptive MS-lasso, which leads to less bias and fewer false positives in the final model.

This paper is organized as follows. In Section 2 we present the MS-lasso and discuss some of its properties. The adaptive
MS-lasso is also presented, and connections to related methods are discussed. Section 3 is dedicated to simulation studies.
In Section 4 the use of the method is illustrated in genomic data, before a final discussion is presented in Section 5.
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