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a b s t r a c t

The Markov-switching GARCH model offers rich dynamics to model financial data. Esti-
mating this path dependent model is a challenging task because exact computation of
the likelihood is infeasible in practice. This difficulty led to estimation procedures either
based on a simplification of the model or not dependent on the likelihood. There is no
method available to obtain themaximum likelihood estimator without resorting to amod-
ification of the model. A novel approach is developed based on both the Monte Carlo ex-
pectation–maximization algorithm and importance sampling to calculate the maximum
likelihood estimator and asymptotic variance–covariance matrix of the Markov-switching
GARCHmodel. Practical implementation of the proposed algorithm is discussed and its ef-
fectiveness is demonstrated in simulation and empirical studies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Financial time series exhibit complex statistical dynamics which are difficult to reproduce with stochastic models. These
dynamics are often referred to as the stylized facts of financial data and include, among others, the heavy-tailed nature of the
return distribution and volatility clustering (see Cont, 2001). The generalized autoregressive conditional heteroskedasticity
(GARCH) class of models (Engle, 1982; Bollerslev, 1986) has been extensively used to model financial data as it offers an
explicit way to model volatility. Markov-switching (MS) or regime-switching models have also attracted a lot of attention
in the econometric literature since the seminal paper of Hamilton (1989). In MS models the return distribution at a given
time depends on the state (or regime) of an unobserved Markov chain. The states of the Markov chain are often given an
economic interpretation. For example, a regime with a negative mean return and high volatility may be associated with a
state of financial distress in the economy.

Due to the popularity of MS and GARCHmodels, it is natural to combine these two approaches and consider aMS-GARCH
model. The MS-GARCH model can be simply understood as a GARCH model where parameters depend on the state of an
unobserved Markov chain. One way to justify such a combination is given by Lamoureux and Lastrapes (1990) and Mikosch
and Starica (2004) who show that the high persistence observed in the variance of financial returns can be explained by
time-varying GARCH parameters.

Hamilton and Susmel (1994) were among the first authors to discuss the MS-GARCH model. They noted that the
estimation of this path dependent model is a challenging task because exact computation of the likelihood is infeasible
in practice. This led some authors (Dueker, 1997; Gray, 1996; Haas et al., 2004; Klaassen, 2002) to propose estimating
modified versions of the MS-GARCH model that circumvent the path dependence problem by maximum likelihood. Other
authors suggested alternative estimationmethods such as a generalizedmethod of moments (GMM) procedure (Francq and
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Zakoïan, 2008) and a BayesianMarkov chainMonte Carlo (MCMC) algorithm (Bauwens et al., 2010, 2011). To this date, there
is no method available to obtain the maximum likelihood estimator (MLE) of the MS-GARCH model without resorting to a
simplification of the model.

The objective and main contribution of this article is to develop a novel approach based on the Monte Carlo expecta-
tion–maximization (MCEM) algorithm (Wei and Tanner, 1990) and the Monte Carlo maximum likelihood (MCML) method
(Geyer, 1994, 1996) to estimate the MLE of the MS-GARCH model. The proposed algorithm requires simulations from the
posterior distribution of the state vector. For this reason, it can be seen as a frequentist counterpart of the Bayesian MCMC
method proposed by Bauwens et al. (2010) in the sense that both algorithms build on the data augmentation technique
(Tanner and Wong, 1987). A secondary contribution of this article is to show how the asymptotic variance–covariance ma-
trix of the MLE can be estimated. This is relevant since Francq and Zakoïan (2008) were not able to obtain the asymptotic
standard errors of their GMM estimates due to numerical difficulties.

This paper is organized as follows. Section 2 defines theMS-GARCHmodel. Section 3 introduces the novel approach to cal-
culate the MLE, proposes a procedure to approximate the asymptotic variance–covariance matrix of the MLE and discusses
practical implementation of the algorithm. Section 4 demonstrates the effectiveness of the proposedmethod in a simulation
study. Section 5 applies the estimation technique to daily and weekly log-returns on the S&P 500 index. Section 6 concludes
and proposes avenues for further research. Moreover, Appendix A justifies the validity of the expectation–maximization
(EM) algorithm when applied to the MS-GARCH model. Appendices B and C include a proof and some technical details
related to the implementation of the algorithm.

2. The MS-GARCHmodel

2.1. Definition

Following Bauwens et al. (2010) and Francq et al. (2001), theMS-GARCHmodel can be defined by the following equations:
yt = µSt + σt(S1:t)ηt , (1)

σ 2
t (S1:t) = ωSt + αSt ϵ

2
t−1(St−1) + βSt σ

2
t−1(S1:t−1), (2)

ϵt−1(St−1) = yt−1 − µSt−1 . (3)
The vector (y1, . . . , yT ) represents the observations to be modeled and ηt , t = 1, . . . , T , are independent and identically
distributed normal innovations with zero mean and unit variance. At each time point, the conditional mean of the observa-
tion yt is µSt = E(yt | St) and the conditional variance is σ 2

t (S1:t) = Var(yt | y1:t−1, S1:t), where y1:t−1 and S1:t are shorthand
for the vectors (y1, . . . , yt−1) and (S1, . . . , St), respectively. The process {St} is an unobserved ergodic time-homogeneous
Markov chain with N-dimensional discrete state space (i.e., St can take integer values from 1 to N). The N × N transi-
tion matrix of the Markov chain is defined by the transition probabilities {pij = Pr(St = j | St−1 = i)}Ni,j=1. The vector
θ = ({µi, ωi, αi, βi}

N
i=1, {pij}

N
i,j=1) denotes the parameters of the model. To ensure positivity of the variance, the following

constraints are required: ωi > 0, αi ≥ 0 and βi ≥ 0, i = 1, . . . ,N . Since
N

j=1 pij = 1 for i = 1, . . . ,N, θ contains (4N +

N(N −1)) free parameters. Conditions for stationarity and the existence of moments were studied by Bauwens et al. (2010),
Francq et al. (2001) and Francq and Zakoïan (2005).

2.2. Path dependence problem

The specification (1)–(3) causes difficulties in estimation since the conditional variance at time t depends on the entire
regimepath S1:t . To emphasize this dependence, the notationσ 2

t (S1:t) is used in Eqs. (1)–(3), but to simplify it inwhat follows,
σ 2
t will be used to represent σ 2

t (S1:t). Moreover, let y and S denote y1:T and S1:T , respectively, and f (p) stand for a probability
density (mass) function. The calculation of the likelihood of the observations, denoted by f (y | θ), can be accomplished by
integrating out all possible regime paths:

f (y | θ) =


S

f (y, S | θ) =


S

f (y | S, θ)p(S | θ)

=


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
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√
2π
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

−
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2

2σ 2
t


p(S | θ). (4)

For large T , this integration is infeasible numerically as the summation in Eq. (4) contains NT terms and quickly becomes
very large. Even the estimation of the likelihood by brute force Monte Carlo (i.e., by simulating independent sequences of
states from the underlyingMarkov chain)will fail since such estimators exhibit prohibitively large variances (see Danielsson
and Richard, 1993). Nevertheless, as shown by Bauwens et al. (2011), it is possible to obtain an accurate estimate of the log-
likelihood by writing

log f (y | θ) = log f (y1 | θ) +

T−1
t=1

log f (yt+1 | y1:t , θ),
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