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a b s t r a c t

The iterative least squares method for estimating panel models with unobservable factor
structure is extended to cover the casewhere the number of factors is unknownapriori. The
proposed estimation algorithm optimizes a penalized least squares objective function to
estimate the factor dimension jointly with the remaining model parameters in an iterative
hierarchical order. Monte Carlo experiments show that, inmany configurations of the data,
such a refinement provides more efficient estimates in terms of MSE than those that could
be achieved if the feasible iterative least squares estimator is calculated with an externally
selected factor dimension. Themethod is applied to the problemof the credit spread puzzle
to estimate the space of the missing risk factors jointly with the effects of the observed
credit and illiquidity risks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the use of panel data has attracted increasing attention in many empirical studies. This is motivated by
the fact that such data sets allow statisticians to deal with the problem of the unobserved heterogeneity. Recent studies have
discussed large panel datamodels in which the unobserved heterogeneity can bemodeled by a factor structure; see, e.g., Bai
(2009), Bai et al. (2009), Kneip et al. (2012), and Pesaran (2006). While most of the ongoing studies have focused on fitting
the model for a given number of factors, the present work considers the problem of estimating the factor dimension jointly
with the unknown model parameters. Our estimation algorithm can be applied for models of the form:

Yit = Xitβ + FtΛ′

i
(1×d)×(d×1)

+ϵit for i ∈ {1, . . . ,N} and ; t ∈ {1, . . . , T }, (1)

where Xit is a (1 × p) vector of observable regressors, β is a (p × 1) vector of unknown parameters, Λi is a (1 × d) vector
of individual scores (or factor loadings), Ft is a (1 × d) vector of unobservable common time-varying factors, ϵit is the error
term, and d is an unknown integer, which has to be estimated jointly with β, Λi and Ft .

The difference between (1) and the classical panel data models consists in the unobserved factor structure FtΛ′

i . It is
noted that (1) not only provides a generalization of panel data models with additive effects, where d = 2, Ft = (ft,1, 1), and
Λi = (1, λ2,i), but also includes the dynamic factor models in static form as in Stock and Watson (2005). To illustrate this
case, consider a static factor model with autocorrelated idiosyncratic errors of order P such that

Yit = F∗

t Λ′

i + eit and
eit = β1ei,t−1 + · · · + βPei,t−P + ϵit .
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It is easily verified that integrating the expansion of eit in the first equation and using ei,t−p = Yi,t−p − F∗
t−pΛ

′

i for each
p = 1, . . . , P results in a panel model of form (1), where the regressors are the lags of Yit , i.e., Xit = (Yi,t−1, . . . , Yi,t−P), and
Ft = F∗

t − β1F∗

t−1 − · · · − βPF∗

t−P .
Moreover, the static presentation of the unobserved factor structure in (1) can arise from q-dimensional dynamic factors,

say Ft , (also called primitive factors or primitive shocks). In this case, Ft = [Ft , . . . , Ft−m] and d = q(m + 1) ≥ q.
Stock and Watson (2005) propose to estimate dynamic factor models in static form by the iterated least squares

method (also called iterative principal component). Bai (2009) studies (1) in the context of panel data models and provides
asymptotic theory for the iterative least squares estimators when both N and T are large. However, Stock and Watson
(2005) and Bai (2009) assume the factors to be stationary. Bai et al. (2009) extend the theoretical development of Bai
(2009) to the case where the cross-sections share unobserved common stochastic trends of unit root processes. They prove
that the asymptotic bias arising from the time series in such a case can be consistently estimated and corrected. Ahn
et al. (2013) consider the classical case where T is small and N is large and estimate the model by using the generalized
method of moments (GMM). They show that, under fixed T , the GMM estimator is more efficient than the estimator of
Bai (2009).

A second criticism of the conventional iterative least squares method is that the number of unobserved factors has
to be known a priori. In this regard, Bai and Ng (2002) and Bai (2004) propose new panel information criteria to assess
the number of significant factors in large panels. The performance of these criteria depends, however, on the choice of
an appropriate maximal number of factors to be considered in the selection procedure. Hallin and Liška (2007) propose
similar criteria in the context of generalized dynamic factor models and provide a calibration strategy to adjust the height
of the penalization; however, the calibration requires extensive computations. Alternatively, Kapetanios (2010) proposes
a threshold approach based on the empirical distribution properties of the largest eigenvalue. The method requires i.i.d.
errors. Onatski (2010) extends the approach of Kapetanios (2010) by allowing the errors to be either serially correlated or
cross-sectionally dependent. Onatski (2009) proposes a test statistic based on the ratios of adjacent eigenvalues in the case
of Gaussian errors. Alternative methods for assessing the number of factors in the context of principal component analysis
and classical factor analysis can be found in Josse and Husson (2012), Dray (2008), and Chen et al. (2010). But note that all
these approaches assume the factors to be extracted directly from observed variables and not estimated with other model
parameters.

Kneip et al. (2012) consider the case of observed regressors and unobserved common factors and propose a semi-
parametric estimationmethod and a sequential testing procedure to assess the dimension of the unobserved factor structure.
The asymptotic properties of their approach rely on second order differences of the factors and i.i.d. idiosyncratic errors.
Pesaran (2006) attempts to control for the hidden factor structure by introducing additional regressors into the model,
which are the cross-section averages of the dependent variables and the cross-section averages of the observed explanatory
variables. The advantage of this estimation procedure is its invariance to the unknown factor dimension. However, the
method does not aim to consistently estimate the factor structure but only deals with the problem of its presence when
estimating the remaining model parameters.

In this paper, we extend the iterative approach of Bai (2009) and Bai et al. (2009) in such a way that we allow for the
number of factors to be unknown a priori. We integrate a penalty term into the objective function to be globally optimized
and update iteratively the estimators of all required parameters in hierarchical order as described in Cao and Ramsay
(2010). Our parameter-cascading strategy also includes the update of the penalty term in order to adjust the height of
the penalization and avoid under- and over-parameterization. Monte Carlo experiments show that, in many configurations
of the data, such a refinement provides more efficient estimates in terms of MSE than those that could be achieved if the
feasible iterative least squares estimator is calculated with an externally selected factor dimension.

There are a lot of examples where the determination of the number of factors in the presence of additional observed
regressors is of particular interest. As an example, we consider, in our application section, the problem of the so-called credit
spread puzzle-the gap between the observed corporate bond yields and duration-equivalent government bond yields that
classical financialmodels of credit risk fail to explain (see, e.g., Huang andHuang, 2012, and Elton et al., 2001). For a long time,
the credit spread has been considered a simple compensation for credit default risk. Most empirical studies show, however,
that default risk cannot be the unique explanatory variable. Kagraoka (2010) decomposes the credit spread into credit risk,
illiquidity risk, and an unobservable risk component, which he defines as systematic risk premium; however, he assumes
the unobserved part to be generated by only one factor. Castagnetti and Rossi (2013) adopt a heterogeneous panel model
with multiple factors. Their results suggest that credit spreads are driven by observable as well as unobservable common
risk factors.

In our application, we extend the empirical development of Kagraoka (2010) by allowing for the systematic risk premium
to be composed of multiple hidden factors. Moreover, we allow for some slope coefficients to be temporally heterogeneous.
This differs from the setting of Castagnetti and Rossi (2013), who use a panel model with cross-sectionally heterogeneous
slope parameters. Our empirical study relies on daily observations of 111 US corporate bonds over a period of 397 business
days. Our results suggest the presence of two unobserved primitive risk factors affecting US corporate bonds during the
period between September 2006 and March 2008, while one single factor is sufficient to describe the data for the time
periods prior to the beginning of the subprime crisis in 2007.

The remainder of this paper is organized as follows: Section 2 proposes an algorithmic refinement of the conventional
iterative least squares estimation method. In Section 3, we extend the model with additional nominal variables, discuss the
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