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a b s t r a c t

A curse of dimensionality arises when using the Continuum-GMM procedure to estimate
large dimensional models. Two solutions are proposed, both of which convert the
high dimensional model into a continuum of reduced information sets. Under certain
regularity conditions, each reduced information set can be used to produce a consistent
estimator of the parameter of interest. An indirect CGMM estimator is obtained by
optimally aggregating all such consistent estimators. The simulation results suggest that
the indirect CGMMproceduremakes an efficient use of the information content ofmoment
restrictions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the financial econometrics literature, many models are specified directly in terms of their characteristic function
(CF) because their densities are unknown. Typical examples include the stable distributions and discretely sampled
continuous time processes. A discrete sample from a square root diffusion is an exception (Singleton, 2001). Its transition
density is of the same form as for an autoregressive Gamma model, being an infinite mixture of Gamma densities with
Poisson weights (see Gourieroux and Jasiak, 2005). Unfortunately, infinite mixtures have to be truncated in practice for the
sake of feasibility. The challenge raised by the estimation of such models has motivated the use of various instances of the
CF based GMM. See e.g. Carrasco and Florens (2000), Jiang and Knight (2002), Knight and Yu (2002), Yu (2004), Taufer et al.
(2011) and Li et al. (2012).

In fact, two random variables have the same distribution if and only if their CFs coincide on their whole domain. This
suggests that an inference procedure that adequately exploits the information content of the CF has the potential to be as
efficient as a likelihood-based approach. The continuum-GMM (CGMM) proposed by Carrasco and Florens (2000) permits
an efficient use of the whole continuum of moment conditions obtained by taking the difference between the theoretical CF
of an IID random variable and its empirical counterpart. Carrasco et al. (2007a) extend the use of the CGMM to Markov and
weakly dependent models. However, the scope of the CGMM goes beyond models specified in terms of their CF. To see this,
let us consider an economic model summarized by a conditional moment restriction (CMR) of the type E (g(θ0, yt)|Xt) = 0,
where yt ∈ R, Xt ∈ Rd and θ0 is the parameter of interest. This type of CMR is quite prevalent in the macroeconomic
and asset pricing literature (e.g., first order conditions of DSGEs or Euler Equations) and it is equivalent to the infinite
set of unconditional moment restrictions given by: E (g(θ0, yt)A(Xt)) = 0 for all possible functions A(Xt). Dominguez
and Lobato (2004) show that using a small number of unconditional moment restrictions selected from the previous
infinite set may not warrant the identification of θ0. They show that identification and GMM-efficiency are achieved by
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exploiting the continuum of unconditional moment restrictions given by E (g(θ0, yt)1(Xt < τ)) = 0, τ ∈ Rd. Bierens
(1982) showed that the CMR E (g(θ0, yt)|Xt) = 0 is also equivalent to the continuum of unconditional moment restrictions
E

g(θ0, yt) exp(iτ ′Xt)


= 0, τ ∈ Rd. The latter continuum shares some similarities with the one used to design the CGMM

and it has also been used by Lavergne and Patilea (2013) to derive smoothed minimum distance estimators.
The CGMM builds on the same philosophy as the GMM of Hansen (1982). Both are based on the minimization of a

quadratic form associated with some scalar product. The scalar product of the GMM is defined on a finite dimensional
vector space while the one used to design the CGMM is defined on an infinite dimensional Hilbert space. An example of
scalar product between two functions h(τ ) and g(τ ) in a complex Hilbert space is given by the integral of h(τ )g(τ ) against
a continuous measure Π(τ )dτ , where g(τ ) is the complex conjugate of g(τ ). The norm of h(τ ) associated with this scalar
product is given by the integral of h(τ )h(τ ) against Π(τ )dτ . Hence the multiplicity of the integral is determined by the
dimensionality of τ . In Carrasco and Florens (2000), h(τ ) ≡ h (τ , θ0) is the difference between the theoretical CF of a random
variable and its empirical counterpart where τ the Fourier transformation index and θ0 a finite dimensional parameter.

Typically, one choosesΠ(τ ) to be a multivariate Gaussian measure on Rd so as to be able to use Gauss–Hermite quadra-
tures. This approachproduces satisfactory resultswhen the index τ is either one-dimensional or two-dimensional (Kotchoni,
2012); however, the complexity of the numerical integration grows exponentiallywith the dimensionality of τ . For instance,
if 10 quadrature points deliver a given precision in numerically evaluating a one dimensional integral, approximately 10d

quadrature points would be required to obtain an equivalent precision for a d-dimensional integral. This ‘‘curse of dimen-
sionality’’ is well-known in computational fields. Possible solutions to address this problem include reducing the number
of quadrature points or removing quadrature points that have very low weights. Unfortunately, neither of these solutions
provides a substantial numerical efficiency gain without jeopardizing the accuracy of the overall estimation procedure.

In an effort to circumvent the aforementioned problem, two approaches are explored in this paper. The first approach
consists of converting the multivariate model into a continuum of univariate models. To begin, one draws a vector τ from
a continuous distribution defined on a standardized subset Λ of Rd (e.g. the unit sphere or the unit hypercube). Next,
one defines the set of all moment functions along the vector line τ as hτ ,t(u, θ0) ≡ ht (uτ , θ0) , u ∈ R. Under certain
regularity conditions, a consistent estimatorθCGMM (τ ) is obtained by minimizing a norm of hτ ,t(u, θ0), which is a function
of a one dimensional index u for a given τ . A final estimator that does not depend on τ is obtained by integratingθCGMM (τ )
against a measure π (τ) dτ on Λ. Unfortunately, some parameters that could be identified from the full information set
ht (τ , θ0) , τ ∈ Rd


may no longer be identifiable from the reduced information set


hτ ,t(u, θ0), u ∈ R


. This leads us

to consider a second approach that relies on a discrete subset of the full information set for the estimation of θ0. Here, one
draws a set of n indices τ1, . . . , τn independently from a continuous distribution onRd, where n is large enough to ensure the
identification of θ from {ht (τi, θ0) , i = 1, . . . , n}. A consistent estimatorθGMM (τ) is then obtained by minimizing a norm
of 1

T

T
t
ht (τ , θ0), whereτ = (τ1, . . . , τn) andht (τ , θ0) is the n-vector of relevant moment conditions. A final estimator

that does not depend onτ is obtained by integratingθGMM (τ) against a measure Π (τ) dτ on

Rd
n. In either case, the

final estimator consists of the aggregation of estimators obtained from samples of type

yτ ,t = τ ′xt

T
t=1 generated from

the frequency domain of the distribution of xt and thus, it has the flavor of one obtained by a resampling method. It is also
reminiscent of an indirect estimator because the underlying procedure converts a high dimensional model into a continuum
of reduced information sets. As such, we refer to this estimator as the indirect CGMM (henceforth, ICGMM) estimator.

Three major issues are addressed regarding the ICGMM procedure. The first issue is related to the identification of
θ0 from the reduced information sets. The second issue involves the choice of the aggregating measure that warrants
minimum variance for the ICGMM estimator. It appears that the optimal weighting scheme is closely related to the inverse
of the covariance operators associated with the random element θCGMM (τ ) and θGMM (τ). The third issue concerns the
implementation of the efficient ICGMM.Wepropose an implementation strategy that relies on a combination of timedomain
and frequency domain resampling and we show that the feasible efficient ICGMM estimator converges in probability to its
theoretical counterpart.

We perform two sets of Monte Carlo experiments that are aimed at comparing the performance of the ICGMM estimator
to that of feasible benchmarks (e.g., Maximum Likelihood, CGMM or Smoothed Minimum Distance). The first set of
experiments is based on a bivariate Gaussian IID model. We use this simple framework as a pretext to introduce a non-
technical summary of the implementation steps of the ICGMM estimator. The second simulation study is based on an
enriched version of a linear heteroscedastic model used in Cragg (1983). We summarize this model into a CMR that is
turned into a continuum of unconditional moment restrictions for the purpose of applying the ICGMM procedure. The
simulation results suggest that the ICGMM procedure compares favorably to the benchmarks and makes an efficient use
of the information content of moment restrictions.

The remainder of the paper is organized as follows. Section 2 presents the general framework for implementing the
ICGMM and introduces the necessary assumptions. Section 3 discusses the properties of standard CGMM estimators.
Section 4 presents the derivation of the optimal aggregating weight for the ICGMM estimator. In Section 5, a feasible version
of the efficient ICGMM estimator is presented and its asymptotic optimality established. For sake of clarity, we focus on IID
models in Sections 2–5. The extension of the ICGMMto CMR,Markov andweakly dependentmodels is discussed in Section 6.
Section 7 presents the Monte Carlo simulations and Section 8 concludes. The proofs of the propositions are gathered in the
Appendix.
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