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a b s t r a c t

The daily return and the realized volatility are simultaneously modeled in the stochastic
volatility model with leverage and long memory. The dependent variable in the stochastic
volatility model is the logarithm of the squared return, and its error distribution is
approximated by a mixture of normals. In addition, the logarithm of the realized volatility
is incorporated into the measurement equation, assuming that the latent log volatility
follows an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process to
describe its longmemory property. The efficient Bayesian estimationmethod usingMarkov
chain Monte Carlo method (MCMC) was proposed and implemented in the state space
representation. Model comparisons are performed based on the marginal likelihood, and
the volatility forecasting performances are investigated using S&P500 stock index returns.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The realized volatility is defined as the sum of the squared intraday returns over a specified time interval such as a day
(e.g., Andersen and Bollerslev (1998) and Barndorff-Nielsen and Shephard (2001)). This measure would provide a consistent
estimator of the latent volatility under the ideal market assumption. The theory of the realized volatility is discussed in
Barndorff-Nielsen and Shephard (2002) and Meddahi (2002), and there have been extensive studies on its time series
structure and performance in volatility prediction (e.g., Andersen et al. (2003, 2007, 2004), Koopman et al. (2005) andMaheu
and McCurdy (2007)).

In the real market, however, two major problems arise in measuring the daily realized volatility using high frequency
return data: (1) the presence of non-trading hours and (2) market microstructure noise in transaction prices. The first
problem arises because the stock market is usually open for only part of the day. For example, the Tokyo Stock Exchange
(TSE) is open for 4.5 h a day and there is a lunch break. If we calculate the realized volatility as the sumof the squared intraday
returnswhen themarket is open,wemayunderestimate the latent one-day volatility. To avoid this underestimation, Hansen
and Lunde (2005) proposed a scale realized volatility that adjusts the realized volatility by the ratio of the variance of the
daily return to the mean of the realized volatility.

Market microstructure noise has various causes, including bid-ask spread and variation in trade sizes (see O’Hara (1995)
and Hasbrouck (2007) for details) and can cause the realized volatility to be a biased estimator of the latent volatility. As the
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sample time interval approaches zero, the bias owing tomicrostructure noise is expected to increase significantly. At-Sahalia
et al. (2005) and Bandi and Russell (2008) propose a procedure to determine the optimal sampling interval, and Zhang et al.
(2005) propose a bias adjusting method by assigning different weights to the realized volatilities calculated using different
time intervals. In addition, Barndorff-Nielsen et al. (2008) derive the Realized Kernel (RK ) as a consistent estimator of the
latent volatility using high frequency data with noise.

Whereas, the intraday returns are heavily contaminated by microstructure noise, the daily returns are less subject to the
noise. The daily returns could, therefore, provide additional information to eliminate the bias owing tomicrostructure noise
and non-trading hours simultaneously. Takahashi et al. (2009) propose an extension of the stochastic volatility (SV)model to
include such simultaneous modeling of the daily returns and realized volatility known as the Realized Stochastic Volatility
(RSV) model. Hansen et al. (2012) implement a similar simultaneous modeling approach within the GARCH framework,
called the Realized GARCH model, and demonstrate the superior, performance of the proposed model compared to GARCH
(using daily returns only). Maheu and McCurdy (2011) consider the simultaneous modeling of S&P500 and IBM data and
show that this approach outperforms the conventional EGARCH model.

Two important properties of the stochastic volatility and realized volatility have been discussed in previous empirical
studies: (i) the leverage effect and (ii) long memory. The leverage effect refers to the correlation between the return at time
t and the logarithm of the volatility at time t + 1 and has been well established in empirical studies of stock returns (see,
e.g., the survey by Shephard (2005)). To account for leverage effects, Melino and Turnbull (1990), for example, use the GMM
(generalized methods of moments), and Harvey and Shephard (1996) use the QML (quasi-maximum likelihood method)
with the Kalman filter for their estimation. Bayesian estimations have been described in various studies (e.g., Jacquier et al.
(2004), Omori et al. (2007) and Omori andWatanabe (2008)). Takahashi et al. (2009) further propose a Bayesian estimation
method for the RSV model with leverage where they use a single realized measure, while multiple realized measures are
used in Venter and de Jongh (forthcoming) and Koopman and Scharth (2013). Superposition model, in which the logarithm
of the volatility is a sum of latent factor processes, is proposed to describe the long-range dependence of the volatility in
Dobrev and Szerszen (2010) with jumps in latent processes, and in Koopman and Scharth (2013) with a correlation between
returns and measurement errors.

The long memory property of the realized volatility has also been investigated in many empirical studies using the high
frequency data (e.g., Andersen et al. (2001)) and Raggi and Bordignon (2012) modeled the realized volatility with long
memory andMarkov switching dynamics using a Bayesian estimationmethod for the state spacemodel. The SVmodel with
longmemory is discussed in Breidt et al. (1998) using the frequency domain approach (spectral likelihood estimator) and in
So (2002) using a Bayesian approach with the state space model (So, 1999). Ruiz and Veiga (2008) investigate the statistical
property of the stochastic volatility model with leverage and long memory (but without using the realized volatility), and
comparewith those of FIEGARCHmodels. Further, the autocorrelation function of powered absolute returns and their cross-
correlations with original returns are derived in Pérez et al. (2009).

This paper extends the RSV model by incorporating both the leverage effects in the SV model and the long memory
property of the realized volatility, and proposes a highly efficient Bayesian estimation method with a Markov Chain Monte
Carlo (MCMC) implementation. Instead of the block sampler used in Takahashi et al. (2009), we employ themixture sampler,
a highly efficient Bayesian estimation method proposed by Kim et al. (1998) and Omori et al. (2007). In these methods,
we take the logarithm of the squared asset return as a dependent variable to obtain linear measurement equations and
approximate the error distribution by a mixture of normal distributions. In addition to the transformed stochastic volatility
model, we assume an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process for the logarithm of the log
volatility to describe the long memory property of the realized volatility.

The paper is organized as follows. In Section 2, we introduce our model and its motivation. Section 3 describes the
Bayesian estimation procedure based on the state space representation and Markov chain Monte Carlo methods. We
illustrate our proposed method through numerical examples using simulated data in Section 4. In Section 5, we present our
empirical studies using S&P500 realized volatility and realized kernels, perform model comparisons based on the marginal
likelihood, and investigate the volatility forecast performances. We conclude in Section 6.

2. Realized stochastic volatility with leverage and long memory

2.1. Realized stochastic volatility with leverage

The simple stochastic volatility model with leverage is given by

y1t = exp(ht/2)ϵt , t = 1, 2, . . . , n, (1)

ht+1 = µ+ φ(ht − µ)+ ηt , t = 1, . . . , n, (2)
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