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a b s t r a c t

Extended stochastic volatility models are studied which use the daily returns as well as the
volatility information in intraday price data summarised in terms of a number of realised
measures. These extended models treat the logarithm of daily volatility as a latent process
with autoregressive structure, relate to daily returns via their variance models and relate
to the logarithms of the realised measures via linear models. Fitting such an extended
stochastic volatilitymodel automatically combines the realisedmeasures and daily returns
into an overall daily volatility estimator. This process is technically rather demanding:
Kalman filter and efficient importance sampling approaches are used here. The extended
models are illustrated empirically using both high and low trading rate data. Simulation
studies are reported which confirm that the model delivers volatility estimates that have
better mean squared error and bias performance than individual realised measures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The volatility of asset returns plays an important role in many areas of financial decision making including portfolio
management, hedging and option pricing. This importance and widespread use makes volatility modelling a very active
research area in financial time series analysis. To be specific this paper shall focus on volatility in the context of the daily
returns of an asset price. Two approaches to modelling the daily volatility have been studied widely, namely GARCH type
models and stochastic volatility (SV) models. In both these approaches the return volatility on a given day is taken to be
expressed by the conditional variance of the return of that day. Thus the starting point of volatility modelling in both
approaches is the specification of this conditional variance. Once this is done the model is fitted to the observed daily
return series. Clearly an individual return observed on a given day can provide only limited information about the variance
of that return. If volatility changes only slowly in time then the information provided by the returns around a given day
may help to estimate the volatility on that day more accurately. However, this will not be the case during periods of high
instability since then the information contained in the neighbouring returns will be less relevant to the volatility of a given
day.

In the context of GARCH models Hansen et al. (2012) conclude that ‘‘A single return only offers a weak signal about
the current level of volatility. The implication is that GARCH models are poorly suited for situations where volatility
changes rapidly to a new level’’. They then go on to develop so-called ‘‘realized GARCH’’ models that incorporate additional
information provided by high-frequency intraday price data, assuming this is available. Traditional SV models using only
daily returns suffer from the same weakness as pointed out above. This motivates the need to extend them also to take
advantage of additional volatility information provided by high-frequency price data. An important step in this direction
was made in the paper of Takahashi et al. (2009) which originally motivated this paper and to which we return below.
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In the context of high frequency intraday price data the first volatility estimator studied was the realised volatility or
realised variance (RV), defined as the sum of the squared returns over short calendar time intervals during the trading
day (see e.g. Andersen et al., 2003). Subsequently many different types of estimators within this context were studied.
Examples include using trade time intervals rather than calendar time intervals (see e.g. Oomen, 2006), replacing squared
returns over intervals by squared ranges (see e.g. Martens and van Dijk, 2007), replacing squared returns with power and
bi-power variation and the so-called AC1 estimator (Barndorff-Nielsen and Shephard, 2004). These developments were
stimulated by the need to reduce bias introduced by so-called market micro structure noise effects and to achieve more
efficient estimation (see e.g. Barndorff-Nielsen et al., 2004, 2008; Hansen and Lunde, 2006; Zhang, 2006; Ait-Sahalia et al.,
2011; Carrasco and Kotchoni, 2010). The class of daily volatility estimators based on intraday data will be referred to as
realised measures (RMs). In the context of this paper they serve as summaries of the volatility information in intraday price
data.

Returning to the paper of Takahashi et al. (2009), they introduce a bivariate model for daily returns and a given daily RM
jointly in time. The observed daily returns are assumed to follow a standard SVmodel (Taylor, 1986) in which the true daily
log-volatility is an AR(1) latent process and the logarithms of the observed daily RM are assumed to be linearly related to this
latent log-volatility. Thismodel is also treated in themore recent paper of Dobrev and Szerzen (2010). Their approachwill be
extended in several directions. In the first place the AR(1) process assumption is relaxed, in the second place multiple RMs
are considered simultaneously and thirdly it is shown how the leverage effect can be handled using the leverage function
recently introduced by Hansen et al. (2012) in the context of GARCH models. Among the results of fitting the extended
model are that it allows one to estimate the biases of the RMs used and to calculate an overall daily volatility estimator that
automatically takes the biases in the RMs into account. Combining a number of given RMswas studied by Patton (2009) and
Patton and Sheppard (2009) who reported that this leads to better volatility estimation.

The remainder of the paper is organised as follows. The extended stochastic volatility model is formulated in Section 2
and some implications following from the model are discussed as well as our approach towards fitting the model to data
via Kalman filtering and efficient importance sampling. This is different from the Markov Chain Monte Carlo method used
in Takahashi et al. (2009) and Dobrev and Szerzen (2010) and required further development of the efficient importance
sampling (EIS) method of Liesenfeld and Richard (2003). Section 3 describes the results of simulation based studies, aimed
at confirming that the fitting of the extended SV model do indeed produce a daily combined volatility estimator (CVE) that
is better than the individual RMs used in the process. Section 4 illustrates the methodology extensively using two empirical
data sets, one with a high trading rate and the other with a low trading rate. The high rate data set is the intraday price data
of the world’s largest resources company BHP-Billiton (code BLT) listed on the London stock exchange. The low trading rate
data set is the intraday price data of an exchange traded fund Satrix-40 (code STX) tracking the so-called TOP40 index on the
Johannesburg stock exchange. Section 4 also contains a further contribution to the realised volatility literature in terms of
the use of the sample variance of the logarithm of an RM to aid in the selection of the parameters to use for the RM. Section 5
closes with a summary and an indication of further research issues. Finally, Appendix A sets out some results on minimum
relative mean square estimators and Appendix B gives the technical details on the model fitting procedures used here and
the issues that had to be dealt with to make it possible.

2. Stochastic volatility models for daily returns incorporating realised measures

In this section, an extended formof the stochastic volatilitymodel of Takahashi et al. (2009) is proposed and it is indicated
how the biases and mean squared errors of the relevant RMs can be quantified using the model. The approach to fitting the
model and several ways of deriving estimators and predictors of the daily volatilities from the model are also discussed.

2.1. An extended stochastic volatility model

An extended form of the stochastic volatility (SV) model for the daily return Yt of a stock on trading day t may be written
in the form

Yt = exp

1
2
Ut


Zt with Zt i.i.d. N(0, 1)-distributed where

Ut = µ +

M
m=1

φm(Ut−m − µ) + ν(Zt−1) + τηt

with ηt i.i.d. N(0, 1)-distributed for t = 1, . . . , T independently of the Zt ’s. (2.1)

Here Var(Yt |Ut) = exp(Ut) = Ht is by definition the return volatility and Ut = log(Ht) will be referred to as the log-
volatility on day t .Ht andUt are not observed directly, i.e. they are latent variables. In case the leverage function ν(Zt−1) = 0
the Ut ’s are assumed to be an AR(M) process; in the existing literature on stochastic volatility models it is usually assumed
that M = 1 but greater generality is allowed here, the need for which will be shown by the illustrations below. Two sets
of innovations are present in the model, namely the Zt ’s and the ηt ’s and it is often assumed that the innovations Zt−1 and
ηt are correlated rather than independent in order to cater for leverage or news impact effects between daily return and
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