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a b s t r a c t

A fast method based on coordinate-wise descent algorithms is developed to solve portfolio
optimization problems in which asset weights are constrained by lq norms for 1 ≤ q ≤ 2.
Themethod is first applied to solve aminimumvariance portfolio (mvp) optimization prob-
lem in which asset weights are constrained by a weighted l1 norm and a squared l2 norm.
Performances of the weighted norm penalized mvp are examined with two benchmark
data sets. When the sample size is not large in comparison with the number of assets,
the weighted norm penalized mvp tends to have a lower out-of-sample portfolio vari-
ance, lower turnover rate, fewer numbers of active constituents and shortsale positions,
but higher Sharpe ratio than the one without such penalty. Several extensions of the pro-
posed method are illustrated; in particular, an efficient algorithm for solving a portfolio
optimization problem in which assets are allowed to be chosen grouply is derived.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

How to select assets to form an optimal portfolio is one of the central issues in financial studies. To solve a portfolio
selection problem such as the mean–variance portfolio optimization (Markowitz, 1952), we usually need to estimate mean
vector and covariance matrix of the asset returns, and then plug the estimates into the optimization problem. If there
are N assets, then the total number of parameters needed to be estimated for the mean vector and covariance matrix is
N+N(N+1)/2. Accurate estimations for these parameters are necessary for successfully implementing a portfolio selection
strategy; however, it is not an easy task, especially when N becomes large. If sample size n for estimating these parameters
is not relatively large enough to N , cumulative estimation errors of these estimated parameters will become non-negligible,
and the optimal mean–variance portfolio with these calibrations will fail to work. Empirical evidences on bad performances
of themean–variance portfolio strategy due to insufficient sample size can be found in Jagannathan andMa (2003), DeMiguel
et al. (2009a) and Kan and Zhou (2007). Kan and Smith (2008) showed that when the ratioN/n is not small enough, if simple
sample estimations are used, they generally will cause an upward biasness on mean and downward biasness on variance of
return of the optimal portfolio. Consequently the resulting in-sample estimation on Sharpe ratio will be too optimistic.

To reduce impacts from the estimation errors,we can choose a smaller number of assets, sayN ′ < N , and at the same time
optimize the objective function in the portfolio optimization. Selecting fewer assets for a portfolio means that the optimal
portfolioweight vector should have some elements exactly equal to zero. Such a portfolio is termed sparse portfolio in Brodie
et al. (2009). Ideally, the sparse portfolio may be obtained by solving the following l0 norm constrained minimum variance
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portfolio (mvp) optimization problem:

min
w

wTΣw subject to ∥w∥l0 ≤ N ′,wT1N = 1, possiblywTµ = µ, (1)

where ∥w∥l0 =
N

i=1 I{wi ≠ 0}, and I{A} denotes the indicator function such that I{A} = 1 if event A is true and I{A} = 0
otherwise. The N × N matrix Σ is the covariance matrix of the N asset returns. Throughout the paper, we assume Σ is
symmetric and positive semidefinite (psd). In practice, Σ can be any kind of psd covariance matrix estimation. The N × 1
vector µ =


µ1,...,µN

T is the vector of expected asset returns, and µ is the investor’s required return.
Solving (1) involves combinatorial optimization, and it becomes extremely difficult when N is large. Practically we can

replace the l0 norm ∥w∥l0 with the l1 norm ∥w∥l1 := ΣN
i=1|wi| in (1). The l1 norm constraint can facilitate zero components

(sparsity) in the weight vector, and hence it can function as the l0 norm constraint to restrict the number of assets in the
portfolio. The l1 norm constraint also is a convex function of w, and such convex relaxation makes the modified portfolio
optimization problem easily tractable even when N becomes very large.

In statistics, the l1 norm penalty approach is frequently used in dealing with high dimensional estimation problems. For
example, Tibshirani (1996) proposed the lasso, which aims to regularize OLS estimation with the l1 norm penalty on regres-
sion coefficients. The l1 norm penalty also has been widely used on estimating structures of networks (Meinshausen and
Buhlmann, 2006; Vinciotti and Hashem, 2013). For portfolio optimization problems, imposing the l1 norm constraint can
improve portfolio performances when the number of assets becomes very large (Brodie et al., 2009; DeMiguel et al., 2009a;
Fan et al., 2012;Welsch and Zhou, 2007). In addition, the portfolio optimizationmay be affected by changes of the estimated
parameters, and imposing the l1 norm constraint can help tomitigate the effects and stabilize the optimization (Brodie et al.,
2009; Fan et al., 2012).

In this paper, we develop fast and easy-to-implement coordinate-wise descent algorithms to solve the norm constrained
portfolio optimization problems. We first focus on an algorithm for solving the optimal minimum variance portfolio (mvp)
with a weighted l1 and squared l2 norm penalty and linear constraints, and later we will show the proposed method can
be extended to mvp optimization problems with various norm constraints. The algorithms previously used to solve such
norm constrained portfolio optimization problems are either quadratic programming or the least angle regression (LARS)
type algorithms (Efron et al., 2004). Recently, the coordinate-wise descent algorithms have been shown to be powerful tools
for solving large dimensional variable selection problems in which the norm penalties are imposed on covariate coefficients
(Friedman et al., 2007).We demonstrate that the coordinate-wise descent algorithms can also be used to solve various norm
constrained portfolio optimization problems.

The norm constraints also have been adopted on the index tracking problem in which a portfolio is formulated to repli-
cate a market index. For example, Giamouridis and Paterlini (2010) used the l1 norm constraint on the problem and showed
that it results in better out-of-sample tracking performances. Gotoh and Takeda (2011) discussed the relations between
norm constraints and robust portfolio optimization problems and then applied an approach of norm constrained condi-
tional value-at-risk (CVaR) portfolio optimization to the index tracking problem. Fastrich et al. (in press) proposed to use
the nonconvex lq norm penalty, 0 < q < 1 on the index tracking problem. In Takeda et al. (2013), they proposed to use
both the l0 and squared l2 norm penalties on tracking a stock index. The authors developed a greedy algorithm to solve the
penalized portfolio optimization and then applied their method on tracking Nikkei 225 index.

In addition to the normconstraint approach,we can assign assetweightswith some simple rules in order to avoidmassive
estimations. The value weighted and equally weighted (1/N) portfolios are such examples. DeMiguel et al. (2009b) showed
how such simple strategies can outperformmore sophisticated strategies. Another frequently usedway is to constructmore
robust statistical estimators for themean vector and covariancematrix of the asset returns, such as bias-adjusted or Bayesian
shrinkage estimators (El Karoui, 2009; Jorion, 1986; Kan and Zhou, 2007; Ledoit and Wolf, 2003; Lai et al., 2011), and use
them in the portfolio optimization problems. We also can combine the improved portfolios to form a new portfolio; for
example Frahm and Christoph (2010) and Tu and Zhou (2011) showed that a suitable linear combination of weights of a
benchmark portfolio and a more sophisticated strategy often provides better performances than either only one of them is
considered. It is natural to incorporate the latter two approaches with the norm constraint strategy.

The rest of the paper is organized as follows. In Section 2, we introduce a benchmark case of the mvp optimization in
which the assetweights are constrained by theweighted l1 and squared l2 norm.We then describe a coordinate-wise descent
algorithm for solving the benchmark case in Section 3. In Section 4, we use real data sets to examine empirical properties
of the weighted norm mvp. In Section 5, we discuss some extensions, which include portfolio optimization problems with
different convex norm penalties, and possible ways to use our method in portfolio optimization when nonconvex norm
constraints are imposed (e.g., Fastrich et al. (2012b)) or even more general objective functions are considered. We also have
a brief discussion on limitations of our method. Section 6 is conclusion.

2. Weighted normminimum variance portfolio

To begin our analysis, we first consider the minimum variance portfolio (mvp) optimization in which the asset weights
are constrained by the weighted l1 and squared l2 norm constraint:

min
w

wTΣw subject to α ∥w∥l1 + (1− α) ∥w∥2l2 ≤ c and wT1N = 1,
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