
Computational Statistics and Data Analysis 72 (2014) 30–44

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Reinforcement learning-based design of sampling policies
under cost constraints in Markov random fields:
Application to weed map reconstruction
Mathieu Bonneau a,b, Sabrina Gaba b, Nathalie Peyrard a,∗, Régis Sabbadin a

a INRA - UR875, Applied Mathematics and Computer Science Unit, 24 Chemin de Borde Rouge - Auzeville - CS 52627,
31326 Castanet Tolosan cedex, France
b INRA - UMR 1347, Agroécologie, 17 rue Sully BP 86510, F-21065 Dijon cedex, France

a r t i c l e i n f o

Article history:
Received 23 August 2012
Received in revised form 26 September
2013
Accepted 4 October 2013
Available online 19 October 2013

Keywords:
Sampling design
Markov decision process
Dynamic programming
Gibbs sampling
Least-squares linear regression
Weed mapping

a b s t r a c t

Weeds are responsible for yield losses in arable fields, whereas the role of weeds in
agro-ecosystem food webs and in providing ecological services has been well established.
Innovative weed management policies have to be designed to handle this trade-off
between production and regulation services. As a consequence, there has been a growing
interest in the study of the spatial distribution of weeds in crops, as a prerequisite
to management. Such studies are usually based on maps of weed species. The issues
involved in building probabilistic models of spatial processes as well as plausible maps
of the process on the basis of models and observed data are frequently encountered and
important. As important is the question of designing optimal sampling policies that make
it possible to build maps of high probability when the model is known. This optimization
problem is more complex to solve than the pure reconstruction problem and cannot
generally be solved exactly. A generic approach to spatial sampling for optimizing map
construction, based on Markov Random Fields (MRF), is provided and applied to the
problem of weed sampling formapping. MRF offer a powerful representation for reasoning
on large sets of random variables in interaction. In the field of spatial statistics, the design
of sampling policies has been largely studied in the case of continuous variables, using
tools from the geostatistics domain. In the MRF case with finite state space variables,
some heuristics have been proposed for the design problem but no universally accepted
solution exists, particularly when considering adaptive policies as opposed to static ones.
The problem of designing an adaptive sampling policy in an MRF can be formalized as
an optimization problem. By combining tools from the fields of Artificial Intelligence (AI)
and Computational Statistics, an original algorithm is then proposed for approximate
resolution. This generic procedure, referred to as Least-Squares Dynamic Programming
(LSDP), combines an approximation of the value of a sampling policy based on a linear
regression, the construction of a batch of MRF realizations and a backwards induction
algorithm. Based on an empirical comparison of the performance of LSDP with existing
one-step-look-ahead sampling heuristics and solutions provided by classical AI algorithms,
the following conclusions can be derived: (i) a naïve heuristic consisting of sampling sites
wheremarginals are themost uncertain is already an efficient sampling approach; (ii) LSDP
outperforms all the classical approaches we have tested; and (iii) LSDP outperforms the
naïve heuristic approach in cases where sampling costs are not uniform over the set of
variables or where sampling actions are constrained.

© 2013 Elsevier B.V. All rights reserved.

∗ Corresponding author. Tel.: +33 0 5 61 28 54 39; fax: +33 0 5 61 28 53 35.
E-mail addresses: bonneau@toulouse.inra.fr (M. Bonneau), sabrina.gaba@dijon.inra.fr (S. Gaba), nathalie.peyrard@toulouse.inra.fr,

peyrard@toulouse.inra.fr (N. Peyrard), sabbadin@toulouse.inra.fr (R. Sabbadin).

0167-9473/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csda.2013.10.002

http://dx.doi.org/10.1016/j.csda.2013.10.002
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2013.10.002&domain=pdf
mailto:bonneau@toulouse.inra.fr
mailto:sabrina.gaba@dijon.inra.fr
mailto:nathalie.peyrard@toulouse.inra.fr
mailto:peyrard@toulouse.inra.fr
mailto:sabbadin@toulouse.inra.fr
http://dx.doi.org/10.1016/j.csda.2013.10.002


M. Bonneau et al. / Computational Statistics and Data Analysis 72 (2014) 30–44 31

1. Introduction

The issues involved in building probabilistic models of spatial processes as well as plausible maps of the process on the
basis of the models and observed data are frequently encountered and have mobilized several research fields in spatial
statistics as well as probabilistic graphical model communities. As important is the question of designing optimal sampling
policies that make it possible to build maps of high probability when the model is known. This optimization problem is
more complex to solve than the pure reconstruction problem and cannot generally be solved exactly. This sampling design
problem has been tackled in Spatial Statistics (de Gruijter et al., 2006;Müller, 2007) and Artificial Intelligence (AI) (Krause and
Guestrin, 2009; Krause et al., 2008; Peyrard et al., 2010). It is evenmore complex in the case of adaptive sampling, where the
set of sampled sites is chosen sequentially and observations from previous sampling steps are taken into account to select
the next sites to be explored (Thompson and Seber, 1996).

The case of sampling real-valued observations (e.g., temperature or pollution monitoring) has been the most frequently
studied,mainlywithin the geostatistical framework ofGaussian random fields and kriging.Much less attentionhas beenpaid
to the case of sampling variables with finite state space. However, this problem naturally arises inmany studies of biological
systems where observations may concern species density classes, disease severity classes, presence/absence values, etc. In
particular, the generic approach developed here was motivated by the question of optimal weed sampling in a crop field
in order to build density class maps. In this article, we focus on the problem of sampling spatial variables with finite state
spaces and propose, similarly to Krause and Guestrin (2009) and Peyrard et al. (2010, 2013), to define the corresponding
optimal sampling problem within the framework of Markov Random Fields (MRF, Geman and Geman (1984)). MRF are well
adapted to model variables with finite state space. For example, they are very popular in image analysis to model image
segmentation problems.

A sampling policy can be static or adaptive. In the first case, the set of sampled sites is chosen prior to the sampling
(see Evangelou and Zhu (2012) for a recent study on static sampling of count data). With an adaptive policy, the sampling
is divided into successive steps and the next set of sampled sites is chosen according to previous observations. Obviously,
adaptive policies are more efficient than static ones, but may not always be applicable. In Krause and Guestrin (2009), the
authors considered the sampling problem in a particular case of MRF, defined on polytrees. They looked for static sampling
policies, as in Peyrard et al. (2010). The work in Peyrard et al. (2013) was the first proposal of a naïve heuristic solution to
design an adaptive sampling policy for the general MRF model. The heuristic was derived from a strong simplification of
the model. Here we extend the work of Peyrard et al. (2013) by proposing an algorithm based on simulations of the exact
MRF model to design a heuristic policy. This algorithm is inspired by tools from the fields of Operations Research (OR) and
AI: Dynamic Programming (DP) and Reinforcement Learning (RL, Sutton and Barto (1998)). RL approaches make it possible
to approximately solve sequential decision problems by making use of simulations to learn the process dynamics under
different decisions. They can be used on-line to construct adaptive policies step-by-step, computing only the current action
to apply from the set of past observations, or they can be used off-line to compute a complete policy before any observation
is actually made. Off-line approaches focus their computational effort prior to policy execution, whereas on-line approaches
alternate action computation phases and action execution phases. The approach we propose in this paper is an off-line RL
algorithm. In particular it is suitable for the weed sampling problem where costly computations during field sampling are
not conceivable.

As we will demonstrate, classical RL algorithms cannot be applied to solve the optimal sampling problem without
being adapted. By combining AI tools with statistical tools, we were able to derive the Least-Squares Dynamic Programming
algorithm (LSDP). LSDP relies on three main premises: (1) the value of a policy is approximated using a least-squares linear
regression; (2) simulated trajectories of the sampling process are computed off-line using Gibbs sampling (Geman and
Geman, 1984) and stored in a batch; (3) the weights of the linear approximation are those that minimize the least-squares
error evaluated on the simulated trajectories. We show experimentally that this algorithm is an improvement over classical
‘‘one-step-look-ahead’’ heuristics and classical RL approaches, thus providing a reference algorithm for spatial sampling
design in the case of finite state space variables.

This paper beginswith a description of the case study thatmotivated this work: weed sampling in a crop field (Section 2).
TheMRF formalization of the optimal adaptive spatial sampling problem is then introduced in Section 3. Section 4 is devoted
to classical OR/AI solutions for computing an optimal policy or an approximation of the optimal policy, and Section 5 contains
a description of the LSDP algorithm. An empirical comparison between one-step-look-ahead approaches, classical OR/AI
algorithms and LSDP on toy problems is provided in Section 6, and on the weed sampling problem in Section 7. Some
methodological and applied perspectives of this work are discussed in Section 8.

2. Case study: weed sampling in a crop field

Weeds are responsible for yield losses in arable fields (Oerke, 2006) because they compete with crops for resources and
can be hosts for parasites and diseases, whereas the role of weeds in agro-ecosystem food webs and in providing ecological
services has beenwell established (Gibson et al., 2006). Therefore, innovativeweedmanagement policies have to bedesigned
to handle the trade-off between production and regulation services. As a consequence, there has been a growing interest in
the study of the spatial distribution of weeds in crops, in particular, for precision agriculture management strategies that
target weed patches within fields.
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