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a b s t r a c t

With continually increasing data sizes, the relevance of the big n problem of classical
likelihood approaches is greater than ever. The functional mixed-effects model is a well
established class of models for analyzing functional data. Spatial functional data in a
mixed-effects setting is considered, and so-called operator approximations for doing in-
ference in the resulting models are presented. These approximations embed observations
in function space, transferring likelihood calculations to the functional domain. The re-
sulting approximated problems are naturally parallel and can be solved in linear time. An
extremely efficient GPU implementation is presented, and the proposedmethods are illus-
trated by conducting a classical statistical analysis of 2D chromatography data consisting
of more than 140 million spatially correlated observation points.1

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

During the last half century, functional data analysis has become a well-established statistical discipline (Ramsay and
Silverman, 2005; Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012). The continuous sophistication of instruments gives
rise to an increasing number of problems where functional aspects have to be taken into account. Statistical analysis of
functional data generally involves the ill-posed problem of inferring an infinite-dimensional function from discrete data
points. This requires some sort of regularization, and the type of regularization is often chosen in terms of roughness
penalties that lead to sparse representations of the inferred function in terms of simple basis functions (Wahba, 1990),
thus reducing the computational complexity. The most typical specification, however, considers the inverse regularization
process where a sparse basis is chosen explicitly for the given problem, which may then be further regularized through a
roughness penalty (Ramsay and Silverman, 2005).

This paper takes a different path for model specification; we consider functional mixed-effects models with random
effects generated by Gaussian processes, and present a framework that moves the calculations needed in such analyses
from the discrete domain induced by the observations to the underlying functional domain. As a consequence it is possible to
efficiently compute the functions in question, even if the regularization does not lead to sparse representations. Themethods
are based on the one-dimensional operator approximations of Markussen (2013), and here new results and resolution
strategies are presented for high-dimensional domains.

The functional viewpoint sheds new light on some of the current challenges in statistics (Jordan, 2011), by both reducing
the computational complexity of a large class of statistical problems dramatically, and at the same time revealing a natural
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1 Code for analyzing spatial functional data on graphics processing units is available as Supplementary material.
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link between partial differential equations and a large number of statistical models, including functional mixed-effects
models, penalized likelihood, and Bayesian models.

In addition to reducing the computational complexity, the proposed resolution strategies are highly parallel, and natu-
rally suited for implementation onmassively parallel processors like graphics processing units (GPUs).While parallelization
and GPUs have received some attention in the statistical community in recent years, the main focus has been on paralleliz-
ing matrix operations and sampling techniques (Suchard et al., 2010; da Silva, 2010). To our knowledge, this work marks
the first attempt of actively formulating solutions for classical statistical problems in a way that is particularly beneficial for
implementation on massively parallel hardware.

The proposedmethods are illustrated by conducting a classical statistical analysis of a dataset of 2D chromatogramswith
more than 140 million spatially correlated observations on a GPU.

2. Model and estimation

We consider spatial functional data on a domain T ⊆ Rd. Suppose we are given k noisy vectorized functional samples
y1, . . . , yk each consisting of n observation points. We assume that the observations are generated from the following
functional mixed-effect model:

yi(t) = θe(i)(t) + xi(t) + εi(t) (1)

where e : {1, . . . , k} → {1, . . . , p} is a factor, θe(i) is the fixed functional mean for group e(i), xi is a zero-mean Gaussian
process with covariance function τ 2G, and εi is a Gaussian white noise process with variance σ 2.

A wide variety of functional mixed-effects models have previously been considered. One of the dominant approaches is
to model functional effects using smoothing splines (Wahba, 1990). Such constructions are considered byWang (1998) and
Guo (2002). Modeling of mixed effects in terms of penalized splines is considered by Chen and Wang (2011), and Lee et al.
(2013) propose a related method based on nested basis functions for spatial mixed-effects models. An alternative approach
to functional mixed-effect models considers the problem in a nonparametric setting, where no distributional or parametric
assumptions are made on the random effects. Boularan et al. (1994) considered modeling of growth curves, assuming only
that population and individual effectswere twice differentiable, and proposed kernel smoothing estimates for the effects. On
a similar note, Núñez-Antón et al. (1999) considered a nonparametric three-level model and applied it to speech recognition
data. For the use of nonparametric statistical modeling techniques for functional data we refer to the monograph by Ferraty
and Vieu (2006), and for a review on functional mixed-effects models we refer to Liu and Guo (2012).

Now, let y be the concatenation of all the vectorized observations of lengthN = kn. The discrete observation y generated
by function evaluation at the points t1, . . . , tn in themodel (1)may bemodeled by a conventional linearmixed-effectsmodel

y = Γ θ + x + ε, (2)

where Γ = In ⊗ Γ 0 is the design matrix corresponding to the factor e and θ ∈ Rnp is a vector of parameters describing the
group mean functions pointwise, x consists of the spatially correlated effects, x ∼ N (0, Ik ⊗ τ 2Σ) with covariance matrix
Σ =


G(ti, tj)


i,j, and ε is independent, identically distributed Gaussian noise ε ∼ N (0, σ 2IN). Since the design is constant

across all observations, i.e. given by Γ 0, the fixed effect θ can be estimated pointwise. The solution strategy presented below
may also be adapted to the situation with a low rank design matrix following Markussen (2013).

Functional mixed-effect models are typically modeled with fixed effects of a functional nature. For simplicity, we
parametrize the fixed effect with one parameter per observation point, mimicking classical mixed-effects models. The
adaption to functional fixed effects given by a limited number of basis functions can be done following the previously
mentioned references. In particular, the computations needed for fixed effects parametrized in terms of smoothing splines
closely follow the computations related to the spatially correlated effect x, and the presented methods naturally extend to
such parametrizations.

The best linear unbiased prediction for the spatially correlated effects in themodel (2) is done bymeans of the conditional
expectation (Robinson, 1991)

E[x | y] =

Ik ⊗ τ 2Σ


V−1(y − Γ θ̂), (3)

where V = σ 2IN + Ik ⊗ τ 2Σ. The variance parameters are typically estimated by minimizing the negative log restricted
likelihood (Harville, 1977; Lee et al., 2006)

ℓy(σ , τ ) = log detV + log det[Γ ⊤V−1Γ ] + (y − Γ θ̂)⊤V−1(y − Γ θ̂). (4)

For later use it is noted that the last term in the likelihood function can be written as

(y − Γ θ̂)⊤V−1(y − Γ θ̂) =
1
σ 2

(y − Γ θ̂)⊤(y − Γ θ̂ − E[x | y])

=
1
σ 2

(y − Γ θ̂ − E[x | y])⊤(y − Γ θ̂ − E[x | y]) +
1
σ 2

E[x | y]⊤(y − Γ θ̂ − E[x | y]). (5)
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