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a b s t r a c t

Amodel in which the response is monotonically related to a given exposure or predictor is
considered. This ismotivated by dose–response analysis, however it also applies to survival
distributions depending on a series of ordered multinomial parameters or, in a more
general context, to change-point problems. In these contexts, although the monotonicity
of the response may be a priori known, it is often crucial to determine whether the
relationship is effective in a given interval, in the sense of not being constant. An efficient
nonparametric test for the constancy of the regression when it is known to be monotone is
developed for both independent and dependent data. The asymptotic null distribution of a
test statistic based on the integrated regression function is obtained. The power against
local alternatives is investigated, and the improvements with respect to the previous
studies in the topic are shown. Some bootstrap procedures for the case of independent
and dependent data are developed and employed in several applications.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The relationship between a given response and a predictor is sometimes known to be monotone in some way. In
biomedical studies examples concerning growth curves, dose–response models, disease risks-biomarkers analysis etc. are
found (see Bornkamp and Ickstadt, 2009, Ghosh, 2007, Marschner et al., 2012, Salanti and Ulm, 2003). The monotonicity of
the regression function can be tested in various ways (see, for instance, Robertson et al., 1988, Ghosal et al., 2000, Hall and
Heckman, 2000, Gijbels et al., 2000, Dumbgen and Spokoiny, 2001, Domínguez-Menchero et al., 2005 orMeyer, 2008, and the
references therein). Some other papers (see, for instance, Delgado and Escanciano, 2012) allow for testing the monotonicity
of the conditional distributions and its moments.

The consideration of the shape constraint in the estimation problems ofmonotone relationships obviously providesmore
meaningful conclusions (see Banerjee, 2007, Bhattacharya and Lin, 2013, Gunn and Dunson, 2005, Hazelton and Turlach,
2011). As a complement of those kinds of studies it raises the question of determining whether the monotone relationship
is effective in a given interval. In this sense, the relationship between a disease risk and the distance to the point source
has been proposed to be (non-parametrically) estimated under the restriction that the risk should be non-increasing with
distance (seeDiggle et al., 1999). An essential question is to verifywhetherwithin a given radius the risk effectively decreases
or, on the contrary, it is constant irrespective of the distance to the prespecified point. In the sameway, one can consider the
response at low dose levels (see Neelon and Dunson, 2004) or the constancy of ordered multinomial parameters in survival
distributions, as the proportion of menopause with the age (see Jewell and Kalbfleisch, 2004), to name but a few.

These problems can generally be stated in terms of a test for the constancy of the isotonic regression (see, for instance,
Robertson et al., 1988, Brillinger, 1989, Wu et al., 2001 and Colubi et al., 2006, 2007). The results in Robertson et al. (1988)
and in Colubi et al. (2006, 2007) are concerned with independent error models from different points of view. The results in
Wu et al. (2001) extend those in Robertson et al. (1988) to the non-independent data case and improve those in Brillinger
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(1989) in the same context. They are based on somemodifications of the classical isotonic likelihood ratio test in Robertson
et al. (1988) obtained by maximum likelihood of a penalized function.

In many situations goodness of fit tests can be used for testing constancy of the regression function. In this respect Durot
(2008) andDurot and Reboul (2010) proposed a goodness of fit test to a parametric family of isotonic regression functions on
a random design setting. It should be noted that the mentioned goodness of fit tests are not applicable for testing constancy
as the regression functions in the parametric class cannot have null derivative at any point, which discards the family of
constant regression functions.

In order to cope efficiently with most of the practical situations a new way of testing the constancy of an isotonic
regression for dependent data is proposed and analysed here. The analysis of local alternatives reveals an improvement
w.r.t. the previous studies. The enhancement is also empirically illustrated. The proposed procedure is based on Stute (1997)
and Stute et al. (1998), where the integrated regression function is used for testing the constancy of a general regression
function without restricting its shape for random design and independent observations. A related strategy is also used in
Durot (2003) for testing isotonicity versus a non-restricted shape for fixed design and independent observations. Stute’s
procedure is specialized here for testing constancy against an isotonic behavior of the regression function, including both
fixed and random design as well as the case of dependent observations. Moreover, the obtained results also allow the
extension of the test in Durot (2003) for random design and dependent cases.

The rest of the paper is organized as follows. In Section 2 the model and the testing problem are motivated. In Section 3
the theoretical results supporting the bootstrap testing procedures, as well as comparisons to other approaches are included
(the proofs are left for the Appendix). In Section 4 the approach is applied to some case-studies.

2. Monotone response models and testing problem

Monotone response models refer to a wide class of situations in which the conditional distribution of a response given a
predictor depends on a parameter which is a monotone function of the predictor (see Banerjee, 2007). It may be assumed
that the conditional distribution comes from a given parametric class, although in this paperwewill consider amore general
non-parametric situation. Themost common responsemodels refer to the conditionalmean, such as those concerning binary
choice or Poisson regression models. The first ones are useful, for instance, to evaluate the probability of disease given the
level exposure to a toxin or the value of a biomarker (see Ghosh, 2007, Hunt and Rai, 2005). Also in survival analysis a
response such as the menopausal status is explained as a function of the age (see Jewell and Kalbfleisch, 2004). The second
ones are related to problems such as the above-mentioned disease risk estimation depending on the distance to a point
source (see Diggle et al., 1999).

The monotone regression model is usually written as Y (xi,n) = m(xi,n) + ε(xi,n) for a fixed design {x1,n, . . . , xn,n} ⊂ A,
with xi,n < xj,n (1 ≤ i < j ≤ n) in an interval A ⊆ R. The conditional mean response m(x) and the conditional variance
σ 2(x) is finite for all x ∈ A, and the regression function m is known to be isotonic. Under some conditions, conclusions for
this model can be also extended to a random design.

In fact, Y ,m and ε may depend also on n, although we do not make it explicit in the notation for the sake of clearness.
In this way, the model includes time series Yi = mi + εi, i = 1, . . . by taking, for instance, A = [0, 1], xi,n = i/(n + 1), and
mn(xi,n), εn(xi,n), Yn(xi,n) as mi, εi and Yi respectively.

For the binary choice models we have a dichotomous response variable (Y = 1 or Y = 0) and a continuous predictor
X such that P(Y = 1|X) = m(X), and the link function m is often known to be monotone. For Poisson regression models
the response Y is assumed to follow a Poisson distribution whose mean m continuously depends on an exposure X , that is,
Y (x) ∼ P (m(x)). In cases such as spatial disease risks,m is assumed to be non-increasing.

The monotone regression function m may be piecewise constant, that is, constant in a given interval. Testing this
hypothesis is frequently critical, as it implies that the mean response is the same irrespectively of the levels of exposure
in such an interval. For this reason, we pose the test

H0 : m is constant versus H1 : m is not constant (1)

under the monotonicity assumption of m. The sample information consists of ri,n observations of Y (xi,n), that is, a set
{Y j(xi,n)}

ri,n
j=1 with Y j(xi,n) = m(xi,n) + εj(xi,n) (i = 1, . . . , n).

3. The new testing procedure based on the integrated regression function

Let F be a continuous distribution function on A. It is well known that the Lebesgue integral regression function, or
integrated regression function,M(t) =

 t
0 m(F−1(τ ))dτ determines the functionm under mild conditions (see, for instance

Stute et al., 1998).
Let Fn be the empirical distribution of the design points x1,n, . . . , xn,n. If Fn

n→∞
−→ F , a uniform consistent estimator of M

can be established as follows. Consider the Cumulative Sum Diagram of a given real function f , that is, the mapping defined
on each t ∈ [0, 1] as the linear interpolation from the values Csdf (0) = 0 and Csdf (i/n) =

i
k=1 f (xk,n)/n for i = 1, . . . , n.

Then,M can be estimated by Csdm̂, where m̂ is so that m̂(xi,n) =
ri,n

j=1
Y j(xi,n)
ri,n

, i = 1, . . . , n.
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