
Computational Statistics and Data Analysis 72 (2014) 190–204

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Nonparametric estimation of the tree structure of a nested
Archimedean copula
Johan Segers 1, Nathan Uyttendaele ∗,1

Université catholique de Louvain, Institut de Statistique, Biostatistique et Sciences Actuarielles, Voie du Roman Pays 20,
B-1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o

Article history:
Received 29 March 2013
Received in revised form 31 October 2013
Accepted 31 October 2013
Available online 14 November 2013

Keywords:
Archimedean copula
Dependence
Nested Archimedean copula
Hierarchical Archimedean copula
Rooted tree
Subtree
Kendall distribution
Fan
Triple
Nonparametric inference

a b s t r a c t

One of the features inherent in nested Archimedean copulas, also called hierarchical
Archimedean copulas, is their rooted tree structure. A nonparametric, rank-based method
to estimate this structure is presented. The idea is to represent the target structure as a
set of trivariate structures, each of which can be estimated individually with ease. Indeed,
for any three variables there are only four possible rooted tree structures and, based on
a sample, a choice can be made by performing comparisons between the three bivariate
margins of the empirical distribution of the three variables. The set of estimated trivariate
structures can then be used to build an estimate of the target structure. The advantage of
this estimation method is that it does not require any parametric assumptions concerning
the generator functions at the nodes of the tree.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Archimedean copulas have become a popular tool for modeling or simulating bivariate data. They are however not
useful for every application, failing for instance to properly model in high dimensions if the data do not exhibit symmetric
dependences. Nested Archimedean copulas (NACs), or hierarchical Archimedean copulas, are an interesting attempt to
overcome this problem. They were first introduced by Joe (1997, pp. 87–89) and then have been studied extensively, see
for instance McNeil (2008), Hofert (2008, 2010) or Hofert (2011) for sampling algorithms; Hofert and Maechler (2011),
who released the first R package devoted to NACs; Hering et al. (2010), who investigated the construction of NACs with
Lévy subordinators; Hofert and Pham (2012), who examined their densities; Okhrin et al. (2013a), who were the first to
investigate likelihood-based estimation; or Okhrin et al. (2013b), who studied tail dependence properties of NACs.

The hierarchy of variables in a nested Archimedean copula is described through a rooted tree. Most often, the tree is
given from the context; see for instance Hofert (2010) or Puzanova (2011). Okhrin et al. (2013a) were the first to address
the issue of reconstructing the tree from a sample, offering a parametric answer in which each generator is assumed to
be known up to some Euclidean parameter(s). In contrast, the method we propose is completely nonparametric since it
does not require the user to make any assumption about the generators of the NAC from which the tree structure must
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be estimated, except for a rather straightforward identifiability condition introduced in Section 4. Although never formally
mentioned, this identifiability condition is assumed throughout Okhrin et al. (2013a) as well.

Sections 2 and3of this paper review the basics of Archimedean copulas andnestedArchimedean copulas. Section 5 shows
how the structure of three variables (Xi, Xj, Xk) can be estimated nonparametrically. The idea is to estimate the Kendall
distribution associated with each pair of variables within (Xi, Xj, Xk); these estimates allow us then to decide if all pairs of
variables have actually the same underlying bivariate distribution or not. If so, then the tree structure of (Xi, Xj, Xk) is the
trivial trivariate structure, that is, a structurewith one internal vertex and three leaves, also called a 3-fan. If not, determining
which pair has a different underlying bivariate distribution allows one to assign the correct tree structure to (Xi, Xj, Xk).

Section 6 introduces a key point, namely that a given tree structure λ can always be represented as a set of trivariate
structures. That is, for a random vector of continuous random variables (X1, . . . , Xd) with a nested Archimedean copula,
it is possible to obtain the tree structure of this nested Archimedean copula provided the tree structure of the nested
Archimedean copula associated with any three variables (Xi, Xj, Xk)with distinct i, j, k ∈ {1, . . . , d} is known. A very similar
result was obtained by Ng and Wormald (1996), who showed that a given structure λ can always be represented as a set
of triples and fans, triples and fans being formally defined in Section 6. Another interesting result is offered by Okhrin
et al. (2013b) who showed that the structure can be retrieved from the bivariate margins of the nested Archimedean
copula.

Our suggestion to estimate the structure of (X1, . . . , Xd) is first to estimate the tree structure of the nested Archimedean
copula associatedwith any three variables (Xi, Xj, Xk)with distinct i, j, k ∈ {1, . . . , d}, and second to use this set of estimated
trivariate structures to build an estimate of the structure of (X1, . . . , Xd). This suggestion and one important related difficulty
make up Section 7.

The performance of our approach is then assessed by means of a simulation study involving target structures in several
dimensions (Section 8). As part of this simulation study, the performance of the approach used by Okhrin et al. (2013a) is
also investigated.

Finally, Section 9 illustrates how our method could be used to highlight hierarchical interactions in the stock market.
Some remaining challenges are outlined in Section 10.

2. Archimedean copulas

Let (X1, . . . , Xd) be a vector of continuous random variables. The copula of this vector is defined as

C(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud),

where (U1, . . . ,Ud) = (FX1(X1), . . . , FXd(Xd)), and where FX1 , . . . , FXd are the marginal cumulative distribution functions
(CDFs) of X1, . . . , Xd, respectively.

Archimedean copulas are a class of copulas that admit the representation

C(u1, . . . , ud) = ψ(ψ−1(u1)+ · · · + ψ−1(ud)),

whereψ is called the generator andψ−1 is its generalized inverse, withψ : [0,∞) → [0, 1], a convex, decreasing function
such thatψ(0) = 1 andψ(∞) = 0. In order for C to be a d-dimensional copula, the generator is required to be d-monotone
on [0,∞), see McNeil and Nešlehová (2009) for details.

The generators in Table 1 are among the most popular ones. All of them are completely monotone, that is, d-monotone
for all integer d ≥ 2. For the Frank family, D1(θ) =

1
θ

 θ
0 t/(exp(t)− 1) dt .

The parameter θ in Table 1 allows one to control the strength of the dependence between any two variables of the related
Archimedean copula. This is best understood by expressing Kendall’s τ coefficient between any two variables of the related
Archimedean copula in terms of θ (Hofert and Maechler, 2011), as done in the last column of Table 1.

All margins of the same dimension of an Archimedean copula are equal, that is, for allm ∈ {2, . . . , d} and for every subset
{i1, . . . , im} of {1, . . . , d} havingm elements, the two vectors

(Ui1 , . . . ,Uim) and (U1, . . . ,Um)

have the same distribution. This result stems from the fact that for Archimedean copulas, C(u1, . . . , ud) is a symmetric
function in its arguments and this is why Archimedean copulas are sometimes also called exchangeable. For modeling
purposes, this exchangeability becomes an increasingly strong assumption as the dimension grows.

Table 1
Some popular generators of Archimedean copulas.

Name Generator ψ(x) θ τ

AMH (1 − θ)/(ex − θ) θ ∈ [0, 1) 1 − 2

θ + (1 − θ)2 log(1 − θ)


/(3θ2)

Clayton (1 + x)−1/θ θ ∈ (0,∞) θ/(θ + 2)
Frank − log(1− (1− e−θ )e−x)/θ θ ∈ (0,∞) 1 + 4(D1(θ)− 1)/θ
Gumbel exp(−x1/θ ) θ ∈ [1,∞) (θ − 1)/θ
Joe 1 − (1 − e−x)1/θ θ ∈ [1,∞) 1 − 4


∞

k=1 1/(k(θk + 2)(θ(k − 1)+ 2))
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