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h i g h l i g h t s

• A two-level finite mixture model for clustering customers and products is proposed.
• Clusters of products nested in segments of customers are determined.
• Customer/product features influence the allocation to segments/clusters.
• An appropriate EM algorithm is presented for the special case of purchase counts.
• The application shows high purchase rate segments linked with clusters of products.
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a b s t r a c t

In several empirical applications analyzing customer-by-product choice data, it may
be relevant to partition individuals having similar purchase behavior in homogeneous
segments. Moreover, should individual- and/or product-specific covariates be available,
their potential effects on the probability to choose certain products may be also
investigated. A model for joint clustering of statistical units (customers) and variables
(products) is proposed in a mixture modeling framework, and an appropriate EM-type
algorithm for ML parameter estimation is presented. The model can be easily linked with
similar proposals appeared in various contexts, such as co-clustering of gene expression
data, clustering of words and documents in web-mining data analysis.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We propose a model-based approach to cluster individuals and products in disjoint individual- and product-specific
groups, where the corresponding partitions are dependent. We will refer to individual-specific groups as segments, while
the product-specific groups will be referred to as clusters. The motivation arises from empirical situations where customer
data are analyzed to investigate on factors affecting the purchase behavior towards several products. The idea is to
define individual-specific segments which are homogeneous in terms of customer product choices; the prior (conditional)
probability for an individual to belong to a given segment is assumed to be a function of individual-specific covariates, andwe
are interested in investigating how such characteristics affect the segment memberships. We can also imagine that, within
an individual-specific segment, a partition of the productsmay be identified depending on their characteristics. For example,
customers with a given purchase profile may prefer a particular subset of products because of their features and such
preferencesmay varywithin segments of customers. In this view, wemay be interested in studyingwhether individuals in a
specific segment (representing a prototypical purchase behavior) choose specific subsets of products for their features. In this
perspective, we aim at jointly partitioning customers and products to investigate about the determinants of the customer
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choices. This purpose might be linked with methods for joint partitioning of genes and tissues (or experimental conditions)
in microarray data analysis (see e.g. Martella et al. (2008)), of words and documents in web data analysis (see e.g. Li and Zha
(2006)), or, in general, when latent block-based clustering is pursued (see e.g. Govaert and Nadif (2003)). Further interesting
links can be established with multi-layer mixtures, see e.g. Li (2005), and with hierarchical mixture of experts models, see
e.g. Titsias and Likas (2002). Such methodological connections will be further discussed to better focus and motivate our
proposal.

The plan of the paper is as follows. In Section 2, the model is introduced in a general framework, and, in Section 3, a ML
approach to parameter estimation is described. An EM-type algorithm is detailed in Section 4 in the context of observed
count data. In Section 5, the analysis of a benchmark data set is proposed. In the last section, concluding remarks and the
future research agenda are discussed.

2. The model

Let Yi, i = 1, . . . , n, be a p-dimensional random vector and let yi, i = 1, . . . , n represent the corresponding realization
in a sample of size n; let Y = (Y1, . . . , Yn)

T denote the (n, p) matrix of the observed values yij, for individual i = 1, . . . , n
and variable j = 1, . . . , p. Just to give an example, and without loss of generality, we may suppose to consider n customers
and p products, where yij represents the number of items of the j-th product the i-th customer has bought in a given time
interval.

In addition, we assume that a set of outcome-specific (price, weight, type of package, etc.) and of individual-specific
(age, gender, educational level, income, etc.) covariates have been also recorded. Let xi and zj denote the vectors containing
the characteristics of the i-th individual, and of the j-th product, j = 1, . . . , p, respectively. In the following, for the sake of
clarity, groups of individuals and products will be termed segments and clusters, respectively.

We adopt a mixture model framework and start by assuming that the population consists of G segments in proportions
π1, . . . , πG,

G
g=1 πg = 1, πg ≥ 0, ∀g = 1, . . . ,G. An unobservable G-dimensional binary indicator vector ui =

(ui1, . . . , uiG) is associated with each individual and has a unique non null element, indicating whether the i-th individual
belongs to the g-th segment or not, i = 1, . . . , n, g = 1, . . . ,G, see e.g. Titterington et al. (1985). In such a mixture
sampling scheme, the sample is obtained by first drawing, independently for each unit, the corresponding segment label, uig ,
g = 1, . . . ,G from the population with probability density function (pdf) h (ui | π); then, values of the outcome variables
are drawn from the population with pdf given by

fg

yi | θg


= f


yi | uig = 1


, (1)

where fg = f

yi | θg


is the g-th segment-specific density with indexing parameter vector given by θg . As usual, the

individual segment indicators ui = (ui1, . . . , uiG) are assumed to be independent multinomial random variables with
probabilities given by π = (π1, . . . , πG). Thus, each observation yi, i = 1, . . . , n, is sampled from the finite mixture density

f (yi | π, θ1, . . . , θG) =

G
g=1

πg fg

yi | θg


. (2)

Let (yi,ui), i = 1, . . . , n be an observed sample drawnunder such a sampling scheme; the so-called complete data density
function is given by

f (yi,ui | θ, π) = f (yi | θ,ui) h (ui | π) =

G
g=1


πg fg


yi | θg

uig , (3)

and the resulting complete-data log-likelihood may be expressed as follows

ℓc (θ, π) =
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
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
+ log


fg


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
. (4)

The estimation of the segment-specific parameters θg , g = 1, . . . ,G and the priors, πg , g = 1, . . . ,G, is usually based
on an EM-type algorithm. Such estimates help us to identify the segment-specific densities and, as a byproduct, to assign
each individual to a segment, through a maximum a posteriori (MAP) rule. That is, the i-th individual is assigned to the g-th
segment if the following condition on the posterior probabilities holds:

Pr

θ = θg | yi


= max

l
Pr (θ = θl | yi) l = 1, . . . ,G.

Let us assume that, within the g-th individual-specific segment (g = 1, . . . ,G), we may identify a partition of the
products in Kg clusters. Fig. 1 may clarify what kind of partition of the observed data we are discussing about.
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