
Computational Statistics and Data Analysis 71 (2014) 14–29

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Clustering longitudinal profiles using P-splines and mixed
effects models applied to time-course gene expression data
N. Coffey a,∗, J. Hinde b, E. Holian b

a School of Mathematical Sciences/Systems Biology Ireland, University College Dublin, Ireland
b School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

a r t i c l e i n f o

Article history:
Received 29 June 2012
Received in revised form 6 April 2013
Accepted 6 April 2013
Available online 12 April 2013

Keywords:
Longitudinal profiles
Time-course gene expression
Clustering
Mixed effects model
Finite mixture model

a b s t r a c t

Longitudinal data is becoming increasingly common and various methods have been
developed to analyze this type of data. Profiles from time-course gene expression studies,
where cluster analysis plays an important role to identify groups of co-expressed genes
over time, are investigated. A number of procedures have been used to cluster time-course
gene expression data, however there are many limitations to the techniques previously
described. An alternative approach is proposed, which aims to alleviate some of these
limitations. The method exploits the connection between the linear mixed effects model
and P-spline smoothing to simultaneously smooth the gene expression data to remove
any measurement error/noise and cluster the expression profiles using finite mixtures
of mixed effects models. This approach has a number of advantages, including decreased
computation time and ease of implementation in standard software packages.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate clustering methods such as k-means clustering (Hartigan and Wong, 1978), hierarchical clustering (Eisen
et al., 1998; Spellman et al., 1998), clustering on self-organizing maps (Kohonen, 1997; Tamayo et al., 1999), finite mixture
models (Fraley and Raftery, 2002;McLachlan et al., 2002, 2003, 2006), fuzzy c-means clustering (Futschik and Carlisle, 2005)
and tight clustering (Tseng and Wong, 2005) have been useful to reduce the dimensionality of gene expression data and
identify groups of co-expressed genes and consequently co-regulated genes (since genes with similar expression profiles
tend to be controlled by the same regulatory mechanisms). See Thalamuthu et al. (2006) and Hand and Heard (2005) for a
full discussion and comparison of numerous clustering techniques. Time-course gene expression studies involve measuring
the expression levels of thousands of genes repeatedly through time and result in extremely high-dimensional data. The
methods mentioned above treat the sequence of measurements for each gene as a vector of distinct points and thus an
arbitrary permutation of the elements of the sequence will not affect the clustering results. However, the time-ordering of
the data and the corresponding clusters obtained is an important consideration in time-course gene expression studies. In
addition, time-course gene expression data exhibit problems such as missing values, unequal sampling times and/or large
measurement errors. Many of the techniques mentioned above have difficulties handling missing values, require identical
sampling times for all genes or fail to account for the correlation betweenmeasurements made on the same gene over time.
This has led to the development of techniques such as CAGED (Ramoni et al., 2002), Hidden Markov Models (Schliep et al.,
2005), Bayesian mixture models (Wakefield et al., 2003), mixtures of linear mixed effects models (Celeux et al., 2005; Ng
et al., 2006; Qin and Self, 2006; Nueda et al., 2007), clustering based on shape similarity (Hestilow and Huang, 2009) and
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clustering of time-course data using SOMs (Chen, 2009). However, these techniques do not facilitate the removal of noise
from the measured data thus ignoring any smoothness that may be evident in the gene expression profiles. As a result,
curve-based clustering methods have been employed to cluster time-course gene expression data. Such methods assume
that gene expression over time is a continuous process and thus can be represented by a continuous smooth curve or
function. Treating the expression profiles as continuous functions ensures that missing values and irregularly sampled data
can be handled appropriately, measurement error can be removed using smoothing techniques, and correlation between
measurements made over time on the same gene can also be accounted for.

Some of the earliest examples of curve-based clustering in time-course gene expression analyses are described in Bar-
Joseph et al. (2003), Luan and Li (2003) and James and Sugar (2003) who used linear combinations of basis functions
(e.g. cubic splines, B-splines, etc.) to model the mean expression profile in each cluster and cluster the estimated basis
function coefficients. Other authors such as Kim et al. (2008) used a linear combination of Fourier basis functions to
represent the expression profiles for clustering and Kim and Kim (2008) clustered based on the derivative coefficients of
a Fourier series. Song et al. (2007) determined the functional principal components (FPCs) using basis function expansions
and clustered based on the FPC scores, while Leng and Müller (2006) represented the expression profiles using a linear
combination of FPCs and performed functional logistic regression of the scores to classify the expression profiles into groups.
However, to estimate the cluster mean curves the methods used in these papers required choosing K , the number of basis
functions, and the knots, the join points for these functions. Choosing an optimal value for the number of basis functions
(or equivalently knots) is a complex problem and it is difficult to control the degree of smoothing applied to the data. Using
too many basis functions results in over-fitting and lack of smoothness in the estimated expression profiles, while using
too few under-fits and over-smooths the data. One solution is to use smoothing spline regression, where a knot is placed at
each unique time point and the resulting over-fitting is controlled by adding a penalty term to the optimization criterion.
In the statistics literature, a common approach is to penalize the curvature (i.e. the integrated squared second derivative) of
the expression curve estimate (seeWahba, 1990; Green and Silverman, 1994; Ramsay and Silverman, 2005, for full details).
The trade-off between fit to the data and smoothness is controlled by a smoothing parameter λ and an optimal value for
λ can be chosen using methods such as cross-validation (CV), or generalized cross-validation (GCV). In time-course gene
expression studies, Ma et al. (2006) used smoothing spline regression to cluster gene expression profiles and called their
method SSClust. Ma et al. (2008) extended this to a Bayesian setting andMa and Zhong (2008) included additional covariates
in the clustering algorithm. Déjean et al. (2007) used smoothing spline regression to estimate the derivatives of the gene
expression profiles before clustering based on the principal component scores of the discretized derivative functions. Tarpey
(2007) and Kayano et al. (2010) clustered time-course data by transforming non-orthogonal basis functions to orthogonal
basis functions (using singular value decomposition (SVD) and theCholesky decomposition respectively) in conjunctionwith
k-means and SOMs respectively, to ensure that clustering the basis function coefficients was equivalent to clustering the
raw data. A major drawback of clustering using smoothing spline regression is the high computational overhead associated
with these methods. Since smoothing splines usually use the same number of basis functions as unique time points, and
the optimization criterion requires numerically evaluating the integral associated with the penalty term, computations can
become cumbersome as the sample size and/or the number of unique observation times increases. In addition, smoothing
spline clustering requires choosing an optimal value for λ for each cluster, which also increases the computational burden
required to fit the model.

In contrast, this paper uses penalized spline (P-spline) smoothing, as discussed by Eilers and Marx (1996) and Ruppert
et al. (2003), to model the gene expression profiles in each cluster. P-spline smoothing is a low-rank smoothing method
that requires using a relatively large number, K , of basis functions, but still less than the number of unique time points
encountered. As stated previously, when the number of basis functions is large, unconstrained estimates of the mean
expression profile leads to over-fitting of the data and a fit that includes excessive amounts of noise. P-spline smoothing
retains all of the basis functions, but constrains their influence using a discrete penalty on the estimated coefficients.
Again the trade-off between fit to the data and smoothness is controlled by the smoothing parameter λ. Representing the
smoothing problem using P-splines reduces the dimensionality of the problem thus reducing the computational burden.
According to Ruppert (2002), P-splines are also relatively insensitive to the number of basis functions selected once enough
basis functions are used. A strategy for choosing the number and location of the knots is given in Section 2.1. P-splines are
also easy to compute since the penalty is discrete, rather than a continuous integral as with smoothing splines. Furthermore,
representing the penalized smoothing problem as a linear mixed effects model has numerous additional advantages. In
a clustering context, writing the smoothing problem as a mixed effects model provides a framework for simultaneously
determining a smooth estimate of the mean expression profile in each cluster, determining estimates of the gene-specific
expression profiles within a cluster through the use of additional random effects (e.g. a random intercept for each gene),
including additional covariates, and clustering expression profiles usingmixtures of mixed effects models. An optimal value
for the smoothing parameter λ can be chosen automatically via restrictedmaximum likelihood (REML) further reducing the
computational overhead, and themodel fitting can be implemented using standard statistical software packages. This paper
uses the linear mixed effects model representation of P-spline smoothing to cluster time-course gene expression profiles.
While themethodology is presented in the context of time-course gene expression data, it can be applied to any longitudinal
dataset where cluster analysis is required.

The remainder of the paper is outlined as follows. Section 2 describes how to represent the raw time-course gene
expression data for a particular gene as a smooth curve and discusses how to implement the P-spline smoothing problem as
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