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a b s t r a c t

Model-based clustering is a popular toolwhich is renowned for its probabilistic foundations
and its flexibility. However, high-dimensional data are nowadays more and more frequent
and, unfortunately, classical model-based clustering techniques show a disappointing
behavior in high-dimensional spaces. This is mainly due to the fact that model-based
clustering methods are dramatically over-parametrized in this case. However, high-
dimensional spaces have specific characteristics which are useful for clustering and
recent techniques exploit those characteristics. After having recalled the bases of model-
based clustering, dimension reduction approaches, regularization-based techniques,
parsimonious modeling, subspace clustering methods and clustering methods based on
variable selection are reviewed. Existing softwares for model-based clustering of high-
dimensional data will be also reviewed and their practical use will be illustrated on real-
world data sets.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is a data analysis tool which aims to group data into several homogeneous groups. The clustering problem
has been studied for years and usually occurs in applications for which a partition of the data is necessary. In particular,
more and more scientific fields require to cluster data in the aim to understand or interpret the studied phenomenon.
Earliest approaches were based on heuristic or geometric procedures. They relied on dissimilarity measures between pairs
of observations. A popular dissimilarity measure is based on the distance between groups, previously introduced by Ward
(1963) for hierarchical clustering. In the same way, the k-means algorithm (MacQueen, 1967) is perhaps the most popular
clustering algorithm among the geometric procedures. Clustering was also defined in a probabilistic framework, allowing
to formalize the notion of clusters through their probability distribution. One of the main advantages of this probabilistic
approach is in the fact that the obtained partition can be interpreted from a statistical point of view. The first works on finite
mixture models were from Wolfe (1963), Scott and Symons (1971) and Duda et al. (2000). Since then, these models have
been extensively studied and, thanks to works such as those of McLachlan and Basford (1988), McLachlan and Peel (2000),
Banfield and Raftery (1993) or Fraley (1998) and Fraley and Raftery (2002), model-based clustering has become a popular
and reference technique.

Nowadays, the measured observations in many scientific domains are frequently high-dimensional and clustering such
data is a challenging problem (Tran et al., 2006; von Borries and Wang, 2009; Tritchler et al., 2005), particularly for
model-based methods. Indeed, model-based methods show a disappointing behavior in high-dimensional spaces. They
suffer from the well-known curse of dimensionality (Bellman, 1957) which is mainly due to the fact that model-based
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clustering methods are over-parametrized in high-dimensional spaces. Furthermore, in several applications, such as mass
spectrometry or genomics, the number of available observations is small compared to the number of variables and such
a situation increases the problem difficulty. Since the dimension of observed data is usually higher than their intrinsic
dimension, it is theoretically possible to reduce the dimension of the original space without loosing any information. For
this reason, dimension reduction methods are frequently used in practice to reduce the dimension of the data before the
clustering step. Feature extraction methods, such as principal component analysis (PCA), or feature selection methods are
very popular. However, dimension reduction usually does not consider the classification task and provide a sub-optimal
data representation for the clustering step. Indeed, dimension reduction methods imply an information loss which could
have been discriminative.

To avoid the drawbacks of dimension reduction, several approaches have been proposed to allowmodel-based methods
to efficiently cluster high-dimensional data. This work proposes to review the alternatives to dimension reduction for
dealing with high-dimensional data in the context of model-based clustering. Earliest approaches include constrained and
parsimonious models or regularization. More recently, subspace clustering techniques and variable selection techniques
have been proposed to overcome the limitations of previous approaches. Subspace clustering techniques are based on
probabilistic versions of the factor analysis model. This modeling allows to cluster the data in low-dimensional subspaces
without reducing the dimension. Conversely, variable selection techniques do reduce the dimension of the data but select
the variables to retain regarding the clustering task. Both techniques turn out to be very efficient and their practical use will
be discussed as well in this article.

This article is organized as follows. Section 2 briefly recalls the bases of mixture modeling and its inference with the
EM algorithm. Section 3 introduces the curse of dimensionality in model-based clustering. Approaches based on dimension
reduction, regularization and parsimonious models are reviewed in Section 4. Then, Sections 5 and 6 present respectively
the approaches based on subspace clustering and variable selection. Existing softwares for model-based clustering of high-
dimensional data are also reviewed in Section 7 and their practical use is discussed in Section 8. Finally, some concluding
remarks are made in Section 9.

2. The mixture model and the EM algorithm

This section first recalls the bases of mixture modeling and its inference with the expectation–maximization (EM)
algorithm.

2.1. The mixture model

Let us consider a data set of n observations {y1, . . . , yn} ∈ Rp that one wants to divide into K homogeneous groups. The
aimof clustering is to determine, for each observation yi, the value of its unobserved label zi such that zi = k if the observation
yi belongs to the kth cluster. To do so,model-based clustering (Fraley and Raftery, 2002;McLachlan and Peel, 2000) considers
the overall population as a mixture of the groups and each component of this mixture is modeled through its conditional
probability distribution. In this context, the observations {y1, . . . , yn} ∈ Rp are assumed to be independent realizations of a
random vector Y ∈ Rp whereas the unobserved labels {z1, . . . , zn} are assumed to be independent realizations of a random
variable Z ∈ {1, . . . , K}. The set of pairs {(yi, zi)}ni=1 is usually referred to as the complete data set. By denoting by g the
probabilistic density function of Y , the finite mixture model is:

g(y) =

K
k=1

πkfk(y), (1)

where πk

with the constraint

K
k=1 πk = 1


and fk respectively represent the mixture proportion and the conditional

density function of the kthmixture component. Furthermore, the clusters are oftenmodeled by the same parametric density
function in which case the finite mixture model is:

g(y) =

K
k=1

πkf (y; θk), (2)

where θk is the parameter vector for the kthmixture component. For a set of observations y = {y1, . . . , yn}, the log-likelihood
of this mixture model is then:

ℓ (θ; y) =

n
i=1

log


K

k=1

πkf (yi; θk)


. (3)

However, the inference of this model cannot be directly done through the maximization of the likelihood since the group
labels {z1, . . . , zn} of the observations are unknown. Indeed, due to the exponential number of solutions to explore, the
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