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a b s t r a c t

The problem of clustering probability density functions is emerging in different scientific
domains. The methods proposed for clustering probability density functions are mainly
focused on univariate settings and are based on heuristic clustering solutions. New aspects
of the problem associated with the multivariate setting and amodel-based perspective are
investigated. The novel approach relies on a hierarchical mixture modeling of the data. The
method is introduced in the univariate context and then extended tomultivariate densities
by means of a factorial model performing dimension reduction. Model fitting is carried out
using an EM-algorithm. The proposedmethod is illustrated through simulated experiments
and applied to two real data sets in order to compare its performance with alternative
clustering strategies.

© 2013 Published by Elsevier B.V.

1. Introduction 1

The problem of analyzing distributions pertaining to continuous variables (i.e. cumulative distribution functions or 2

probability density functions) may arise in different research domains. To consider only a few examples, we can cite 3

the study of age distributions across different world countries on a given year (Delicado, 2011), the characterization of 4

computer images by the distribution of the respective gray-scale pixel values (Spellman et al., 2005), the comparison among 5

the distributions of collagen fibril diameters observed in different mice strains (Chervoneva et al., 2012), or the idea of 6

performing customer segmentation after each customer has been represented by the distribution of the item unit price 7

across his purchases (Sakurai et al., 2008). 8

In general, distributions are commonly used in exploring and modeling complex data sets in order to ensure that, 9

after database aggregation, information is preserved. In fact, representing the generic ‘‘object’’ of interest (namely, in the 10

above-mentioned examples: world country, image, mouse, customer, respectively) using a distribution is more informative 11

than using classical representations, such as the average, when characteristics like variability, skewness or modality are of 12

specific interest. This is leading to the emergence of a new methodological setting in data analysis, in which a data point is 13

represented by a whole distribution (see Noirhomme-Fraiture and Brito, 2011). 14

Within this context, the present work focuses on the problem of clustering a set of J ‘‘objects’’ into homogeneous clusters 15

with respect to the corresponding distribution of a continuous random vector y ∈ Rp (p ≥ 1). More precisely, we suppose 16

that for each object j a set of nj observations of y is available, which is taken as a random sample from the corresponding 17

unknown parental probability density function fj, with j = 1, . . . , J . For this reason, the objects to be clustered will be 18

termed as ‘‘pdf-objects’’ in the following. 19

The methods that have been proposed in the literature for clustering a set of observed distributions mainly consist 20

in specifying a suitable metric to quantify divergence between two arbitrary distributions and then applying a classical 21
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Fig. 1. Hierarchical structure.

hierarchical or partitive clustering method. In this field, Irpino and Verde (2008) have carried out an extensive work, with1

special attention to histogram data. Alternatively, Terada and Yadohisa (2010) have proposed a non-hierarchical clustering2

method that works with empirical cumulative distribution functions, in order to avoid that the number of histogram bins3

(or the range of bins) affects the results of clustering.4

These approaches have been developed for both univariate (i.e. p = 1) and multivariate settings. However, dealing5

with multidimensional distributions is more challenging, since a relatively large number of observations is required due to6

the curse of dimensionality; in addition, the straightforward extension of univariate methods to the multivariate settings7

involves computationally demanding procedures. A common solution to the latter problem is to assume independence and8

classify the objects using marginal distributions. Alternatively, Vrac et al. (2011) have proposed a method for clustering a9

set of estimatedmultivariate distribution functions based on the use of copula analysis so that the relationship between the10

observed variables is taken into account.11

The present paper introduces a novel approach to the problem of clustering a set of pdf-objects, whose main feature12

is to rely on a hierarchical mixture modeling of the data rather than on some heuristic clustering procedure. In addition,13

the solution designed for the case of multivariate densities has the desirable feature of allowing dimension reduction by14

assuming a generative factorial model for the observed variables.15

The rest of the paper is organized as follows. Section 2 introduces the proposed method in the case p = 1; an example16

on a real data set is reported in Section 3 for illustrative purposes. Section 4 presents the extension of the method to17

p > 1. Section 5 reports the EM-algorithm used to fit the proposed model; identifiability conditions are also discussed.18

The performance of the method on simulated and real data is evaluated in Sections 6 and 7, respectively. A final section19

contains some concluding remarks.20

2. The proposed approach: the univariate setting21

Let {y11, . . . , yi1, . . . , yn11}, . . . , {y1j, . . . , yij, . . . , ynjj}, . . . , {y1J , . . . , yiJ , . . . , ynJ J} denote J samples of variable y ∈ R,22

each set being randomly drawn from a different parental distribution j (with j = 1, . . . , J), referred to as ‘‘pdf-object’’ j.23

As shown in Fig. 1, these data have an intrinsic two-level hierarchical structure, in which pdf-objects correspond to higher-24

level units (referred to by the index j), and the random realizations from the different pdfs represent lower-level units (those25

nested within the higher-level unit j are denoted by the index i, ranging from 1 to nj). If y denotes a p-dimensional variable,26

the multilevel framework can still be adopted by interpreting the p values observed on each lower-level unit as nested27

univariate observations; this amounts to adding an extra level of nesting at the bottom of the hierarchy. In general, under28

the multilevel perspective, the problem of clustering a set of univariate or multivariate pdfs can be naturally recast as a29

problem of clustering higher-level units.30

Among the models for describing multilevel data (see, for example, Skrondal and Rabe-Hesketh, 2004), those based on31

finite mixture modeling (McLachlan and Peel, 2000) are particularly appealing for the purpose of partitioning the set of32

higher-level units (see, for example, Vermunt and Magidson, 2005 and Vermunt, 2007). This is due to the fact that finite33

mixtures provide both a sound statistical framework for cluster analysis (where each component in the mixture is assumed34

to correspond to a cluster) and as a semi-parametric tool for estimating unknown distributional shapes (provided that the35

number of components is taken sufficiently large to yield an accurate estimate), as an alternative to nonparametric density36

estimation (see, for instance, Golyandina et al., 2012 and references therein). This is particularly attractive for our purpose37

of building a model for the hierarchical data depicted in Fig. 1, as clustering and density estimation are the two main issues38

pertaining to the higher and the lower level of the hierarchy, respectively.39

Therefore, we propose to assume two separate finite mixture models simultaneously, each one corresponding to a40

distinct level of the hierarchy, as described in the following. For notational convenience, we present the proposed model by41

introducing latent multinomial random variables s and r to indicate component membership for higher- and lower-level42

units, respectively.43

– At the higher level, sample yj = [yij]
nj
i=1 from the j-th pdf-object is assumed to be drawn from one of L different latent44

classes or sub-populations (L being fixed but unknown), with respective unknown prior probabilities wl, l = 1, . . . , L,45



Download English Version:

https://daneshyari.com/en/article/6870297

Download Persian Version:

https://daneshyari.com/article/6870297

Daneshyari.com

https://daneshyari.com/en/article/6870297
https://daneshyari.com/article/6870297
https://daneshyari.com

