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a b s t r a c t

The traditional estimation of mixture regression models is based on the normal as-
sumption of component errors and thus is sensitive to outliers or heavy-tailed errors.
A robust mixture regression model based on the t-distribution by extending the mixture
of t-distributions to the regression setting is proposed. However, this proposed new mix-
ture regressionmodel is still not robust to high leverage outliers. In order to overcome this,
a modified version of the proposed method, which fits the mixture regression based on
the t-distribution to the data after adaptively trimming high leverage points, is also pro-
posed. Furthermore, it is proposed to adaptively choose the degrees of freedom for the
t-distribution using profile likelihood. The proposed robust mixture regression estimate
has high efficiency due to the adaptive choice of degrees of freedom.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mixture regression models are well known as switching regression models in the econometrics literature, which were
introduced by Goldfeld and Quandt (1973). These models have been widely used to investigate the relationship between
variables coming from several unknown latent homogeneous groups and applied inmany fields, such as business,marketing,
and social sciences (Jiang and Tanner, 1999; Böhning, 1999;Wedel andKamakura, 2000;McLachlan and Peel, 2000; Skrondal
and Rabe-Hesketh, 2004; Frühwirth-Schnatter, 2006).

Let Z be a latent class variable such that given Z = j, the response y depends on the p-dimensional predictor x in a linear
way

y = xTβj + ϵj, j = 1, 2, . . . ,m, (1.1)

where m is the number of homogeneous groups (also called components in mixture models) in the population and ϵj ∼

N(0, σ 2
j ) is independent of x. Suppose P(Z = j) = πj, j = 1, 2, . . . ,m, and Z is independent of x, then the conditional

density of Y given x, without observing Z , is

f (y|x, θ) =

m
j=1

πjφ(y; xTβj, σ
2
j ), (1.2)

where φ(·;µ, σ 2) is the density function of N(µ, σ 2) and θ = (π1,β1, σ1, . . . , πm,βm, σm)
T . The model (1.2) is the so

called mixture of regression models. Hennig (2000) proved identifiability of model (1.2) under some general conditions for
the covariates. In general, the model (1.2) is identifiable if the number of components, m, is smaller than the number of
distinct (p − 1)-dimensional hyperplanes that one needs to cover the covariates of each cluster. The above conditions are
usually satisfied if the domain of x contains an open set in Rp.
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The unknownparameter θ in (1.2), given observations {(x1, y1), . . . , (xn, yn)}, is traditionally estimated by themaximum
likelihood estimate (MLE):

θ̂ = argmax
θ

n
i=1

log


m
j=1

πjφ(yi; xTi βj, σ
2
j )


. (1.3)

Note that the maximizer of (1.3) does not have an explicit solution and is usually estimated by the EM algorithm (Dempster
et al., 1977).

It is well known that the log-likelihood function (1.3) is unbounded and goes to infinity if one or more observations
lie exactly on one component hyperplane and the corresponding component variance goes to zero. When running the EM
algorithm, some initial values might converge to the boundary point with small variance and very large log-likelihood. In
such situations, our objective is to find a local maximum of (1.3) in the interior of parameter space (Kiefer, 1978; Peters
andWalker, 1978). However, the challenge is to find this interior local maximum. Hathaway (1985, 1986) proposed putting
some constraints on the parameter space such that the component variance has some low limit. Yao (2010) proposed using
the profile likelihood and a graphical method to locate the interior local maximum. Practically, the interior local maximum
can usually be found by starting from some ‘‘good’’ initial values such as the K-means (MacQueen, 1967) and the moment
method estimator (Lindsay and Basak, 1993). Chen et al. (2008) also proposed using a penalized likelihood method to avoid
the unboundedness of mixture likelihood. In this article, for simplicity of computation and comparison, we assume equal
variance for all components.

The MLE θ̂ in (1.3) works well when the error distribution is normal. However, the normality based MLE is sensitive to
outliers or heavy-tailed error distributions. There is little research about how to estimate themixture regression parameters
robustly. Markatou (2000) and Shen et al. (2004) proposed using a weight factor for each data point to robustify the
estimation procedure for mixture regression models. Neykov et al. (2007) proposed robust fitting of mixtures using the
trimmed likelihood estimator (TLE). Bai et al. (2012) proposed a modified EM algorithm to robustly estimate the mixture
regression parameters by replacing the least squares criterion in M step with a robust criterion. Bashir and Carter (2012)
extended the idea of the S-estimator to mixture of linear regression. There are also some related robust methods for linear
clustering (Hennig, 2002, 2003; Mueller and Garlipp, 2005; García-Escudero et al., 2009, 2010).

In this article, we propose a new robust mixture regression model by extending the mixture of t-distributions proposed
by Peel andMcLachlan (2000) to the regression setting. Similar to the traditional M-estimate for linear regression (Maronna
et al., 2006), the proposed estimate is expected to be sensitive to high leverage outliers. To overcome this problem, we also
propose a modified version of the newmethod by fitting the newmodel to the data after adaptively trimming high leverage
points. Compared to the TLE, the proportion of trimming of our new method is data adaptive instead of a fixed value. In
addition, we propose to use the profile likelihood to adaptively choose the degrees of freedom for the t-distribution. The
proposed estimate has high efficiency, i.e., comparable performance to the traditional MLE when the error is normal, due to
the adaptive choice of degrees of freedom. Using a simulation study and real data application, we compare the newmethod
to some existing methods, and demonstrate the effectiveness of the proposed method.

The rest of this article is organized as follows. In Section 2, we introduce our new robustmixture linear regressionmodels
based on the t-distribution. In Section 3, we propose to further improve the robustness of the proposed method against
high leverage outliers by adaptively trimming high leverage points. In Section 4, we introduce how to adaptively choose
the degrees of freedom for the t-distribution. In Section 5, we compare the proposed method to the traditional MLE and
some other robust methods by using a simulation study and real data application. Section 6 contains a discussion of possible
future work.

2. Robust mixture regression using the t-distribution

In order to more robustly estimate the mixture regression parameters in (1.2), we assume that the error density fj(ϵ) is
a t-distribution with degrees of freedom νj and scale parameter σ :

f (ϵ; σ , ν) =
0

ν+1
2


σ−1

(πν)
1
20

ν
2

 
1 +

ϵ2

σ 2ν

 1
2 (ν+1)

. (2.1)

We first assume that νjs are known.Wewill discuss about how to adaptively choose νjs in Section 4. The unknownparameter
θ in (1.2) can be estimated by maximizing the log-likelihood

ℓ(θ) =

n
i=1

log


m
j=1

πjf (yi − xTi βj; σ , νj)


. (2.2)

Note, however, the above log-likelihood does not have an explicit maximizer. Here, we also propose to use an EM
algorithm to simplify the computation. Let

zij =


1, if the ith observation is from the jth component;
0, otherwise,
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