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a b s t r a c t

A robust estimation procedure for mixture linear regressionmodels is proposed by assum-
ing that the error terms follow a Laplace distribution. Using the fact that the Laplace distri-
bution can bewritten as a scalemixture of a normal and a latent distribution, this procedure
is implemented by an EM algorithm which incorporates two types of missing information
from the mixture class membership and the latent variable. Finite sample performance of
the proposed algorithm is evaluated by simulations. The proposed method is compared
with other procedures, and a sensitivity study is also conducted based on a real data set.

Published by Elsevier B.V.

1. Introduction

Least absolute deviation (LAD) regression has been widely used in practice if robust estimation is desired. The research
on its computation and theoretical properties is abundant in the literature. A detailed survey on this topic can be found
in Dielman (1984, 2005). It is known that the outliers impact more heavily on mixture linear regression models than on
the usual linear regression models, since the outliers not only affect the estimation of the regression parameters, but also
possibly totally blur the mixture structure. In this paper, LAD will be applied to a class of mixture linear regression models.
Simulation studies show that the proposed estimators of the regression coefficients are robust.

To be specific, let X be a p-dimensional vector of explanatory variables and Y be a scalar response variable. The relation-
ship between Y and X is often investigated through a linear regression model. In the mixture linear regression setup, we
assume that with probability πi, i = 1, 2, . . . , g, (X ′, Y ) comes from one of the following g ≥ 2 linear regression models

Y = X ′βi + σiεi, i = 1, 2, . . . , g, (1)

where
g

i=1 πi = 1, theβi’s are unknown p-dimensional vectors of regression coefficients, and theσi’s are unknownpositive
scalars. The random errors εi’s are assumed to be independent of the Xi’s. It is commonly assumed that the density functions
of εi’s are members in a location-scale family with means 0 and variances 1. In the following discussion, the design variable
X is assumed to be random, but the proposed estimation procedure also works for the fixed design.

If g = 1, the LAD estimator of β is the minimizer of the target function Q (β) =
n

j=1 |Yj − X ′

jβ|, where (X ′

j , Yj)
n
j=1

is a sample from model (1). Many algorithms have been developed in the literature to tackle the minimization problem
β̂ = argminβQ (β), such as linear programming, least angle regression, modified maximum likelihood method by Li and
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Arce (2004), among others. An often adopted but ad-hoc scheme for finding theMLE ofβ is to obtain the root of the derivative
of Q (β). Here σ 2 is treated as a nuisance parameter. By doing this, we obtain

∂Q (β)

∂β
= −

n
j=1

Xj sgn(Yj − X ′

jβ) = 0, (2)

where sgn(·) is the sign function which takes −1, 0, 1 if the argument is negative, 0, and positive, respectively. Let wj =

1/|Yj − X ′

jβ|, and rewrite the Eq. (2) as
n

j=1 wjXj(Yj − X ′

jβ) = 0. Thus by supplying an initial value β0 for β , the updated
value β can be found by the weighted least square solution

β1 =


n

j=1

wjXjX ′

j

−1 n
j=1

wjXjYj, (3)

where wj = 1/|Yj − X ′

jβ0|. By iterating the procedure, one can eventually find an approximate solution to argminβQ (β).
A very interesting connection between the iterated weighted least square procedure stated above and an EM algorithm

in conjunction with the Laplace distribution is found in Phillips (2002). For the sake of completeness, we briefly describe the
procedure proposed in Phillips (2002).

Andrews and Mallows (1974) showed that a Laplace distribution can be expressed as a mixture of a normal distribution
and another distribution related to the exponential distribution. To be specific, suppose Z and V are two random variables,
V has a distribution with density function v−3 exp(−(2v2)−1), v > 0, and given V = v, the conditional distribution of Z
is normal with mean 0 and variance σ 2/(2v2). Then Z marginally has a Laplace distribution with density function hε(z) =

exp(−
√
2|z|/σ)/(

√
2σ). Based on this, Phillips (2002) developed an EM algorithm to search for the minimizer of Q (β).

If V could be observed, then the complete log-likelihood function of θ = (β, σ 2), based on the sample P = (Xj, Yj, Vj)
n
j=1,

is

L(θ; P) = −
n
2
log(πσ 2) −

1
σ 2

n
j=1

V 2
j (Yj − X ′

jβ)2 −

n
j=1

log V 2
j −

1
2

n
j=1

1
V 2
j
.

Following the two steps in the EM algorithm procedure, and assuming that θ (k)
= (β(k), σ 2(k)) is the value for the kth iter-

ation, then in the (k + 1)th iteration, we have to first calculate the conditional expectation of the complete log likelihood
function L(θ; P), given the observed data set (Yj, Xj)

n
j=1 and θ = θ (k), which has the following form

E[L(θ; P)|S] = −
n
2
log(πσ 2) −

n
j=1

E[V 2
j |θ (k), (Xj, Yj)

n
j=1](Yj − X ′

jβ)2

σ 2

−

n
j=1

E[log V 2
j |θ (k), (Xj, Yj)

n
j=1] −

1
2

n
j=1

E


1
V 2
j

 θ (k), (Xj, Yj)
n
j=1


.

In the second step, the conditional expectation is maximized over θ . Denote wj = E[V 2
j |θ (k), (Xj, Yj)

n
j=1], and notice that the

third and fourth terms on the right hand side do not involve the unknown regression parameters. Therefore, to maximize
the above conditional expectation is equivalent to maximize the following terms with respect to θ ,

−
n
2
log σ 2

−

n
j=1

wj(Yj − X ′

jβ)2

σ 2
.

Interestingly, Phillips (2002) showed wj = E[V 2
j |θ (k), (Xj, Yj)

n
j=1] = σ (k)/(

√
2|Yj − X ′

jβ
(k)

|). This implies that the solution
β(k+1) is the same as the one based on (3) and the iteratively reweighted least squares procedure is an application of the EM
algorithm. It is also easy to see that σ 2(k+1) can be estimated by 2

n
j=1 wj(Yj − X ′

j β(k+1))2/n.
The robustness property of the LAD procedure, and the natural connection between LAD estimation andmaximum likeli-

hood estimation for the regression coefficients given Laplace distributed random error when g = 1, motivate us to consider
the possible extension of the algorithm to the mixture model setup. When g ≥ 2, we assume that for each i, i = 1, 2, . . . ,
g, εi follows a Laplace distribution with location 0 and scale parameter 1/

√
2, which results in the variance of εi being 1.

Then it is easily seen that for a sample S = {(X ′

j , Yj), j = 1, 2, . . . , n} from the model (1), the log-likelihood function of
θ = (β1, σ

2
1 , π1, β2, σ

2
2 , π2, . . . , βg , σ

2
g , πg) can be written as

L(θ; S) =

n
j=1

log


g

i=1

πi
√
2σi

exp


−

√
2|Yj − X ′

jβi|

σi


. (4)
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