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a b s t r a c t

Excess zeros and overdispersion are common phenomena that limit the use of traditional
Poisson regression models for modeling count data. Both excess zeros and overdispersion
caused by unobserved heterogeneity are accounted for by the proposed zero-inflated
Poisson (ZIP) regression mixture model. To estimate the parameters of the model, an EM
algorithmwith an embedded iteratively reweighted least squares method is implemented.
The parameter estimation performance of the proposed model is evaluated through
simulation studies. The ZIP regressionmixturemodel is applied to the DMFT index dataset,
which contains excess zeros and overdispersion. Comparisons of several other models
commonly used for such data with the ZIP regressionmixture model show that, in general,
the latter model fits the data well.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Modeling count data is a topic of major interest in fields such as sociology, engineering, medical studies and others.
The classical Poisson regression model for count data is often of limited use in these disciplines because empirical count
data typically exhibit overdispersion (i.e., the variance of the response variable exceeds the mean). This phenomenon often
results from unobserved heterogeneity, which occurs when the sample of responses are drawn from a population consisting
of several sub-populations. Mixtures of Poisson distributions have beenwidely used to deal with this problem. For example,
a finite Poisson mixture model with K components explains the population by giving weights πk to sub-populations with
means λk, k = 1, . . . , K . This approach also provides a natural framework to classify observations into the components
of the mixture model. Poisson mixtures were first proposed by Simar (1976) and Laird (1978). Finite mixtures of Poisson
regression models with constant weight parameters have been developed by Wedel et al. (1993), Brännaäs and Rosenqvist
(1994), Wang et al. (1996), and Alfò and Trovato (2004). Wang et al. (1998) discuss finite mixed Poisson regression models
that incorporate covariates in theweight parameters. As an alternative to handling overdispersion, a negative binomial (NB)
regression model can be used since it allows the variance to be larger than the mean.

The count variable of interestmay containmore zeros than expected under a Poissonmodel,which is commonly observed
in many applications. For instance, the DMFT index, analyzed in Section 5, indicates the number of defective teeth in
adolescents. As expected, a large number of subjects have no defective teeth, which illustrates an occurrence of zero-
inflation. A popular approach to modeling excess zeros is to use a zero-inflated Poisson (ZIP) regression model, as discussed
by Lambert (1992). The ZIP distribution is a mixture of a Poisson distribution and a degenerate distribution at zero. This
regression setting allows for covariates in both the Poisson mean and weight parameter. Böhning (1998) and Ridout et al.
(1998) provide reviews of the related literature and present examples from a wide variety of disciplines.

Furthermore, if overdispersion remains even after modeling excess zeros, a zero-inflated negative binomial (ZINB)
regression model can provide a good solution. However, if a population has excess zeros and several sub-populations in
non-zero counts, a single component of the ZINB regression model may not be sufficient to describe the non-zero counts. In
this paper, we propose the ZIP regression mixture model for heterogeneous count data with excess zeros.
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The paper is organized as follows. We describe the ZIP regression mixture model in Section 2. The EM algorithm for
model fitting is described in Section 3. Several simulation studies assessing the performance and sensitivity of parameter
estimation are presented in Section 4, and Section 5 demonstrates real data applications of the model. Finally, we conclude
with a discussion in Section 6.

2. ZIP regression mixture model

Suppose that a count response variable Y follows a ZIP mixture distribution:

P(Y = y) =
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where K is the number of mixing components, λk is the mean, and πk is the mixing weight of component k such that
0 < πk < 1, k = 1, . . . , K , and

K
k=1 πk = 1. The weight π1 determines the proportion of excess zeros compared

with an ordinary Poisson mixture model. If K is equal to two, the ZIP mixture distribution in Eq. (1) is reduced to the ZIP
distribution (Lambert, 1992).

To allow the mean and the mixing weight to depend on covariates, we model {λk}
K
k=2 and {πk}

K
k=1 using the following

regression models that assume log(λk) and the multinomial logit of πk to be linear functions of covariates:

log(λik) = xiβk, i = 1, . . . ,N, k = 2, . . . , K (2)

πik(wi, γ ) =
exp(wiγk)

1 +

K
k=2

exp(wiγk)

, πi1(wi, γ ) = 1 −

K
k=2

πik(wi, γ ), (3)

where xi = (xi1, . . . , xip) and wi = (wi1, . . . , wiq) are 1 × p and 1 × q row vectors of covariates (including an intercept),
respectively, and βk and γk are the corresponding p × 1 and q × 1 vectors of regression coefficients for the kth component,
respectively. Note that the mixing probability of the first component πi1(wi, γ ) is the probability of excess zeros, and is
taken as the baseline for the multinomial logit. That is, the logit for the other components relative to πi1 is log(πik/πi1) =

wiγk, k = 2, . . . , K .
The generalized ZIP (GZIP) regression mixture model can be formulated as follows:

P(Y = yi) = πi1(wi, γ )I(yi=0) +

K
k=2

πik(wi, γ )Pois(yi | λik(xi, βk)), (4)

where I(·) is 1 if the specified condition is satisfied and 0 otherwise, and Pois(yi | λik(xi, βk)) denotes the Poisson probability
mass function of yi withmean λik(xi, βk). A special case of the abovemodel will be obtained if themixing weights πik(wi, γ )
are assumed to be constant functions of the covariates,wi. In that case, the ZIP with fixed weights (FZIP) regression mixture
model can be formulated as follows:

P(Y = yi) = π1I(yi=0) +

K
k=2

πkPois(yi | λik(xi, βk)). (5)

If both πik and λik are constant functions, the GZIP mixture model reduces to the standard Poisson mixture model, denoted
by

P(Y = yi) =

K
k=1

πkPois(yi | λk). (6)

Note that, the first component (a degenerate distribution with all mass π1 at yi = 0) in Eq. (4) can be regarded as a Poisson
distribution with a mean of λ1 = 0, because Pois(yi = 0 | λ1 = 0) = 1 and Pois(yi ≠ 0 | λ1 = 0) = 0.

In the following section, we describe an estimation method based on the EM algorithm for the GZIP regression mixture
model given by Eq. (4).

3. Model estimation

The EM algorithm can be applied to obtain the maximum likelihood estimates (MLEs) in a finite mixture model of
arbitrary distributions (McLachlan and Krishnan, 1997). Let the number of components, K , be fixed and known, and
zi = (zi1, . . . , ziK ) be the latent vector of component indicator variables, where

zik =


1, ith subject comes from the latent kth component
0, otherwise.
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