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a b s t r a c t

A novel family of twelve mixture models with random covariates, nested in the linear
t cluster-weighted model (CWM), is introduced for model-based clustering. The linear t
CWM was recently presented as a robust alternative to the better known linear Gaussian
CWM. The proposed family of models provides a unified framework that also includes
the linear Gaussian CWM as a special case. Maximum likelihood parameter estimation is
carried out within the EM framework, and both the BIC and the ICL are used for model
selection. A simple and effective hierarchical–random initialization is also proposed for
the EM algorithm. The novel model-based clustering technique is illustrated in some
applications to real data. Finally, a simulation study for evaluating the performance of the
BIC and the ICL is presented.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In direct applications of finite mixture models (see Titterington et al., 1985, pp. 2–3), we assume that each mixture-
component represents a group (or cluster) in the original data. The term ‘‘model-based clustering’’ has been used to describe
the adoption of mixturemodels for clustering or, more often, to describe the use of a family of mixturemodels for clustering
(see Fraley and Raftery, 1998; McLachlan and Basford, 1988). An overview of mixture models is given in Everitt and Hand
(1981), Titterington et al. (1985), McLachlan and Peel (2000), and Frühwirth-Schnatter (2006).

This paper focuses on data arising from a real-valued random vector

Y ,X ′

′
: Ω → Rd+1, having joint density p (y, x),

where Y is the response variable and X is the vector of covariates. Standard model-based clustering techniques assume
that Ω can be partitioned into G groups Ω1, . . . ,ΩG. As for finite mixtures of linear regressions (see, e.g., Leisch, 2004;
Frühwirth-Schnatter, 2006, Chapter 8) we assume that, for eachΩg , the dependence of Y on x can be modeled by

Y = µ

x;βg


+ εg = β0g + β′

1gx + εg ,

where βg =

β0g ,β

′

1g

′, µ x;βg


= E

Y |X = x,Ωg


is the linear regression function and εg is the error variable,

independent with respect to X , with zero mean and finite constant variance σ 2
g , g = 1, . . . ,G. However, as highlighted

in Hennig (2000), finite mixtures of linear regressions are inadequate for most of the applications because they assume
assignment independence: the probability for a point


y, x′

′ to be generated by one of the mixture components has to be the
same for all covariates values x. In other words, the assignment of the data points to the clusters has to be independent of
the covariates.

Here, differently from finite mixtures of linear regressions, we assume random covariates having a parametric
specification. This allows for assignment dependence: the covariate distributions of the mixture components can also be
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distinct. In the framework of mixture models with random covariates, the cluster weighted model (CWM; Gershenfeld,
1997), with equation

p (y, x) =

G
g=1

πgp

y, x|Ωg


=

G
g=1

πgp

y|x,Ωg


p

x|Ωg


, (1)

also called the saturated mixture regression model by Wedel (2002), constitutes a reference approach to model the joint
density. In (1), normality of both p


y|x,Ωg


and p


x|Ωg


is commonly assumed (see, e.g., Gershenfeld, 1997; Punzo, 2012).

Alternatively, Ingrassia et al. (2012) propose the use of the t distribution, which provides more robust fitting for groups
of observations with longer than normal tails or noise data (see, e.g., Zellner 1976, Lange et al. 1989, Peel and McLachlan
2000, McLachlan and Peel 2000, Chapter 7, Chatzis and Varvarigou 2008, and Greselin and Ingrassia 2010). In particular,
the authors consider

p

y|x,Ωg


= ht


y|x; ξg , ζg


=

Γ


ζg+1
2



πζgσ 2

g

 1
2

1 + δ


y, µ


x;βg


; σ 2

g

 ζg+1
2

(2)

and

p

x|Ωg


= htd


x;ϑg , νg


=

Γ


νg+d

2

 Σg
− 1

2


πνg

 d
2

1 + δ


x,µg;Σg

 νg+d
2

, (3)

with ξg =

βg , σ

2
g


, ϑg =


µg ,Σg


, δ

y, µ(x;βg); σ

2
g


=

y − µ


x;βg

2
/σ 2

g , and δ

x,µg;Σg


=

x − µg

′
Σ−1

g
x − µg


. Thus, (2) is the density of a (generalized) univariate t distribution, with location parameter µ


x;βg


, scale

parameter σ 2
g , and ζg degrees of freedom, while (3) is the density of a multivariate t distribution with location parameter

µg , inner product matrixΣg , and νg degrees of freedom. By substituting (2) and (3) into (1), we obtain the linear t CWM

p (y, x;ψ
˜
) =

G
g=1

πght

y|x; ξg , ζg


htd


x;ϑg , νg


, (4)

where the set of all unknown parameters is denoted by ψ
˜

=

ψ1, . . . ,ψG


, with ψg =


πg , ξg , ζg ,ϑg , νg


. Quite recent

developments in CWMs are proposed by Punzo (2012), who considers polynomial regressions, and by Subedi et al. (in press)
who model data with a large number of covariates.

In this paper, we introduce a family of twelve linear CWMs obtained from (4) by imposing convenient component
distributional constraints. If ζg , νg → ∞, the linear Gaussian (normal) CWM is obtained as a special case. The resulting
models are easily interpretable and appropriate for describing various practical situations. In particular, they also allow us
to infer if the group-structure of the data is due to the contribution of X , Y |X , or both.

The paper is organized as follows. In Section 2, we recall model-based clustering according to the CW approach, and
give some preliminary results. In Section 3, we introduce the novel family of models. Model fitting in the EM paradigm
is presented in Section 4, related computational aspects are addressed in Section 5, and model selection is discussed in
Section 6. In Section 7 some applications to real data are illustrated. In Section 8 simulations for a comparison between BIC
and ICL are described. Finally, in Section 9, we give a summary of the paper and some directions for further research.

2. Preliminary results for model-based clustering

This section recalls some basic ideas on model-based clustering according to the CWM approach and provides some
preliminary results that will be useful for definition and justification of our family of models.

Let

y1, x′

1

′
, . . . ,


yN , x′

N

′ be a sample of size N from (4). Onceψ
˜
is estimated, the posterior probability that the generic

unit

yn, x′

n

′, n = 1, . . . ,N , comes from componentΩg is given by

τng = P

Ωg |yn, xn;ψ

˜


=
πght


yn|xn; ξg , ζg


htd


xn;ϑg , νg


p (yn, xn;ψ

˜
)

, g = 1, . . . ,G. (5)

These probabilities, which depend on both marginal and conditional densities, represent the basis for clustering and
classification.

The following two propositions, which generalize some results given in Ingrassia et al. (2012), require the preliminary
definition of

p (y|x;π
˜
, ξ
˜
, ζ
˜
) =

G
g=1

πght

y|x; ξg , ζg


(6)
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