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a b s t r a c t

A framework of using t mixturemodelswith fourteen eigen-decomposed covariance struc-
tures for the unsupervised learning of heterogeneousmultivariate datawith possiblemiss-
ing values is designed and implemented. Computationally flexible EM-type algorithms are
developed for parameter estimation of these models under a missing at random (MAR)
mechanism. For ease of computation and theoretical developments, two auxiliary indicator
matrices are incorporated into the estimating procedure for exactly extracting the location
of observed and missing components of each observation. Computational aspects related
to the specification of starting values, convergence assessment and model choice are also
discussed. The practical usefulness of the proposed methodology is illustrated with real
data examples and a simulation study with varying proportions of missing values.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Finite mixture models (FMMs) have attracted considerable attention and been widely used in many disciplines such as
supervised and unsupervised clustering, pattern recognition, data mining, computer vision, signal and image processing,
machine learning in bioinformatics, and so on. Practical applications may be found in monographs by Everitt and Hand
(1981), Titterington et al. (1985), McLachlan and Basford (1988), McLachlan and Peel (2000), Bishop (2006), and Frühwirth-
Schnatter (2006). The Gaussianmixture (GMIX)model (e.g. Redner andWalker, 1984) has been found to be themost popular
model-based tool because of its wide applicability and desirable properties. When handling those data with relatively a
larger dimension p than the number of observations n, however, GMIX may produce unreliable results due to singular or
near-singular estimates of the component-covariance matrices.

Traditionally, in various applications, individuals among a population may often be divided into several nonoverlapping
groups. Cluster analysis (or clustering) is a task of identifying a natural grouping of observations that are cohesive
and separate from the other groups. The GMIX-based clustering method in which the component covariance matrix is
parameterized via a variant of eigenvalue decomposition (Banfield and Raftery, 1993; Celeux and Govaert, 1995; Bensmail
and Celeux, 1996; Bensmail et al., 1997) is among the most popular model-based clustering techniques due to its versatility
of use. Many freely available statistical packages designed for mixture analysis such as mclust (Fraley and Raftery, 2003)
and mixmod (Biernacki et al., 2006) have often been used for model-based clustering. Recently, model-based classification
techniques built on latent GMIX models were investigated by McNicholas (2010).

Mixtures of t distributions as originally proposed by McLachlan and Peel (1998), known as t mixture (TMIX) models,
have been considered a standard choice in place of GMIX because of their robustness against atypical observations. Peel
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and McLachlan (2000) adopted the expectation conditional maximization (ECM) algorithm (Meng and Rubin, 1993) for
parameter estimation and showed the robustness of the model in clustering. Shoham (2002) presented a robust clustering
technique based on two variants of expectationmaximization (EM) algorithms (Dempster et al., 1977). Recent developments
in Bayesian missing data problems include Lin et al. (2004, 2009). More recently, Andrews and McNicholas (2012) have
presented a new family of TMIX models with component covariance matrices parameterized by an eigen-decomposed
structure and showed its effectiveness in clustering, classification and discriminant analysis.

Missing data occur frequently due to diverse reasons, especially encountered in areas such as censuses and surveys
(Rubin, 1987). Simply deleting the caseswithmissing values from the analysismay yield substantial biases. Learningmixture
models from incomplete data were pioneered by Ghahramani and Jordan (1994), who applied the EM algorithm to conduct
maximum likelihood (ML) estimation of GMIX model with arbitrary patterns of missingness. Wang et al. (2004) presented
an ordinary EM algorithm to cope with ML estimation of TMIX models in the presence of missing data.

In this paper, we consider the learning of TMIX models with 14 parsimonious eigen-decomposed covariance structures
wherever missing data occur. In what follows, the missingness of data is assumed to be missing at random (MAR) with an
ignorable mechanism (cf. Rubin, 1976; Schafer, 1997; Little and Rubin, 2002). In this setup, the missingness is unrelated to
the missing values, and likelihood inference can ignore the missing data mechanism. Note that the proposed strategy is also
valid if mechanism is missing completely at random (MCAR), which is a special case of MAR. In a view of computational
aspects, we establish workable EM-type algorithms for ML estimation of model parameters as well as imputation of each
missing value. To reduce complications during the estimation procedure, we introduce two permutation matrices for
indexing the observed andmissing components of each individual item. Further, we offer a conditional predictor to retrieve
the missing components and a classifier to allocate partially observed vectors.

The outline of the paper is as follows. In Section 2, for the sake of completeness, we give a brief sketch of TMIXmodels and
the background related to implementing eigenvalue decomposition and diagonalization for component covariancematrices
simultaneously. Section 3 presents the development of EM-type algorithms for obtainingML estimates ofmodel parameters
and retrieving a plausible imputed value for each missing cell. Some practical issues including the specification of starting
values, the stopping rule and the model selection criterion are addressed in Section 4. In Section 5, we provide results for
the simulated data, and in Section 6, we illustrate the usefulness of the proposed method with two real-world data sets.
Concluding remarks are made in Section 7.

2. Preliminaries

We begin by introducing the TMIX model and briefly describing some related properties. Next, we summarize some
features of the 14 possible parameterizations for component covariance matrices. Besides, we review the F–G algorithm
(Flury and Gautschi, 1986), which is a complex iterative procedure for solving ML solutions of model parameters with
common orientations across different components.

2.1. The TMIX model

Consider n independent p-dimensional feature vectors y1, . . . , yn which come independently from a nonhomogeneous
populationwith g subgroups. Suppose that each observation yj is froma g-componentmixture ofmultivariate t distributions
with density

f (yj | 2) =
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where 2 = (w, 9, ν) represents all unknown parameters and tp(· | µ, 6, ν) denotes a p-variate t density function with
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where ∆ij = (yj − µi)
T6−1

i (yj − µi) denotes the Mahalanobis distance between yj and µi with respect to 6i. The log-
likelihood for data consisting of n observations y = (y1, . . . , yn) arisen from a g-component TMIX model is given by
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The ML estimates of 2 can be solved by

2̂ = argmax
2

ℓ(2 | y),
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