
Computational Statistics and Data Analysis 71 (2014) 196–210

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Parsimonious skew mixture models for model-based
clustering and classification
Irene Vrbik, Paul D. McNicholas ∗

Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

a r t i c l e i n f o

Article history:
Received 1 July 2012
Received in revised form 4 July 2013
Accepted 4 July 2013
Available online 11 July 2013

Keywords:
Eigenvalue decomposition
EM algorithm
GPCM
MCLUST
Mixture models
Model-based clustering
Skew-normal distribution
Skew-t distribution

a b s t r a c t

Robust mixture modeling approaches using skewed distributions have recently been
explored to accommodate asymmetric data. Parsimonious skew-t and skew-normal
analogues of the GPCM family that employ an eigenvalue decomposition of a scale matrix
are introduced. The methods are compared to existing models in both unsupervised
and semi-supervised classification frameworks. Parameter estimation is carried out using
the expectation–maximization algorithm and models are selected using the Bayesian
information criterion. The efficacy of these extensions is illustrated on simulated and real
data sets.
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1. Introduction

The objective of cluster analysis is to organize data into groupswherein the similarity within groups and the dissimilarity
between groups are maximized. A ‘model-based’ approach is one that uses mixture models for clustering. The use of finite
mixture models has become increasingly common for clustering and classification, particularly with the use of Gaussian
components. The Gaussian model-based clustering likelihood is

L(ϑ | x1, . . . , xn) =

n
j=1

g
i=1

πiφ(xj | µi, 6i), (1)

where πi > 0, such that
g

i=1 πi = 1, are mixing proportions and φ(xj | µi, 6i) is the density of a multivariate Gaussian
randomvariablewithmeanµi and covariancematrix6i. Model-based classification is a semi-supervised analogue ofmodel-
based clustering (cf. Section 6).

Gaussian mixture models have been used for a wide variety of clustering applications, including work by McLachlan
and Basford (1988), Bouveyron et al. (2007), McNicholas and Murphy (2008, 2010a,b), and Baek and McLachlan (2010),
amongst others. In efforts to accommodate data that exhibit somedeparture fromnormality, robust extensions are garnering
increased attention. For instance, mixtures of multivariate t-distributions (McLachlan and Peel, 1998; Peel and McLachlan,
2000) have proven effective for dealing with components containing outliers. They have been the basis of a variety of robust
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clustering and classification techniques, including work by McLachlan et al. (2007), Greselin and Ingrassia (2010), Andrews
and McNicholas (2011a,b), Andrews et al. (2011), Baek and McLachlan (2011), Steane et al. (2012), McNicholas and Subedi
(2012) and Morris et al. (in press).

Capturing components that are asymmetric can be tackled using skew-normal distributions (cf. Lin et al., 2007) or other
non-elliptically contoured distributions (e.g., Karlis and Santourian, 2009). One example of a non-elliptical distribution is the
skew-normal independent distribution, as considered for finitemixturemodeling in Cabral et al. (2012). Another interesting
alternative is the skew Student-t-normal distribution that has recently been used to model skewed heavy-tailed data (Ho
et al., 2012). Although many non-symmetric options are available, we focus on mixtures of skew-normal distributions and
mixtures of skew-t distributions herein.

Recently, mixtures of multivariate skew-t distributions have received some attention within the literature. Of course,
the skew-normal, t , and Gaussian distributions are all special or limiting cases of the skew-t distribution. This property
can be important in clustering applications because we often do not know the most appropriate underlying distribution.
Alongside the skewness parameter that accommodates asymmetric data, the degrees of freedomparameter allows for heavy
tails, giving less weight to outlying observations in parameter estimation. Compared to work on parsimonious Gaussian
and t-mixtures, the literature contains relatively little on parsimonious mixtures of multivariate skew-normal and skew-t
distributions. The purpose of this paper is to go some way towards addressing this deficiency.

The remainder of the paper is organized as follows. In Section 2, we introduce skew-t and skew-normal mixture models
and briefly discuss parameter estimation. Section 3 presents the construction of parsimonious families of models that are
analogues of popular Gaussian approaches. The proposedmethods are comparedwithGaussian andmultivariate t analogues
using simulation studies (Section 4) and four benchmark clustering data sets (Section 5). Thesemodels are extended further
to semi-supervised classification in Section 6, which is followed by concluding remarks (Section 7).

2. Mixtures of skew-t and skew-normal distributions

2.1. A mixture of skew-t distributions

Although the computational tractability of Gaussian mixture models has contributed to their widespread popularity
within the literature, their application is not always appropriate. For instance, Kotz and Nadarajah (2004) argue that the
multivariate-t distribution provides a more realistic model for real-world data and it has been noted (e.g., Lin et al., 2007)
thatGaussianmixturemodels have a tendency to overfit skeweddata. Therefore, it is natural to consider a single distribution,
namely the multivariate skew-t distribution, that conflates the robust properties of the t-distribution with a skewness
parameter to account for asymmetry. We outline a model-based approach using parsimonious mixtures of multivariate
skew-t distributions and we also consider a mixture of skew-normal distributions, which is a limiting case.

There are a number of ‘skew-t ’ distributions within the literature. The version that we adopt, as defined by Pyne et al.
(2009), uses a particular stochastic representation of the multivariate skew-t distribution given by Sahu et al. (2003).
Adopting this characterization, a random vector Y is said to follow a p-variate skew-t distribution with location vector
ξ, scale matrix�, skewness vector λ, and ν degrees of freedom if, conditional on a random variableW ∼ gamma(ν/2, ν/2),
it has the representation

Y = λ|U| + X, (2)

where
X
U

W = w ∼ N


ξ
0


,


� 0
0 1


1
w


.

We consider a g-component mixture of p-dimensional skew-t distributions with density given by

f (yj | 9) =

g
i=1

πi~(yj | ξi, �i, λi, νi), (3)

where ~(yj | ξi, �i, λi, νi) is the density of a multivariate skew-t distribution with location vector ξi, scale matrix �i,
skewness parameter λi, and νi degrees of freedom, and 9 contains all model parameters, i.e., 9 contains the parameters
{πi, ξi, �i, λi, νi : i = 1, . . . , g}.

2.2. A mixture of skew-normal distributions

Now consider the skew-normal distribution, which is a limiting case of the skew-t distribution. The version we adopt is
defined by Sahu et al. (2003) and proposed for the analysis of flow cytometric data by Pyne et al. (2009). Resembling the
above characterization (Section 2.1), a random vector Y is said to follow a p-variate skew-normal distribution with location
vector ξ, scale matrix �, and skewness vector λ if it has the representation

Y = λ|U| + X, (4)
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