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• Four non-ignorable missingness models are proposed.
• Three robust models to deal with outliers are proposed.
• A full Bayesian method is implemented.
• Model selection criteria are proposed in a Bayesian context.
• Three simulation studies and one real data case study are conducted.
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a b s t r a c t

Challenges in the analyses of growth mixture models include missing data, outliers, esti-
mation, and model selection. Four non-ignorable missingness models to recover the infor-
mation due to missing data, and three robust models to reduce the effect of non-normality
are proposed. A full Bayesian method is implemented by means of data augmentation al-
gorithm and Gibbs sampling procedure. Model selection criteria are also proposed in the
Bayesian context. Simulation studies are then conducted to evaluate the performances of
the models, the Bayesian estimation method, and selection criteria under different situ-
ations. The application of the models is demonstrated through the analysis of education
data on children’s mathematical ability development. The models can be widely applied to
longitudinal analyses in medical, psychological, educational, and social research.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mixture models offer natural models for unobserved population heterogeneity. The importance of mixture models, their
enormous developments, and their frequent applications are not only remarked by a number of recent books but also by
a diversity of journal publications. For example, Computational Statistics & Data Analysis has published two special issues
on mixture models (Bohning and Seidel, 2003; Bohning et al., 2007) and the current issue is a new one. Latent growth
models are used to study individuals’ latent growth trajectories by analyzing the variables of interest on the same individuals
repeatedly through time (e.g., Bollen and Curran, 2006; McArdle and Bell, 1999; Meredith and Tisak, 1990). These models
are very popular in biological, psychological, educational, and social sciences (e.g., Collins, 1991; Fitzmaurice et al., 2004;
Singer and Willett, 2003). By combining latent growth models and finite mixture models (e.g., McLachlan and Peel, 2000),
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growth mixture models (GMMs, see, e.g., Lubke and Muthén, 2005; Muthén, 2004; Muthén et al., 2011), therefore, provide
researchers with a flexible set of models for growth data with latent population heterogeneity.

However, with the increase in complexity of model specification comes an increase in difficulties estimating GMMs.
First, missing data are almost inevitable (e.g., Little and Rubin, 2002; Yuan and Lu, 2008), especially in longitudinal
studies (e.g., Jelicic et al., 2009; Roth, 1994). Little and Rubin (2002) distinguished ignorable and non-ignorable missingness
mechanisms. Non-ignorable missingness is a crucial and serious concern, because not attending to it may result in severely
biased statistical estimates, standard errors, and associated confidence intervals (e.g., Little and Rubin, 2002; Schafer,
1997; Zhang and Wang, 2012). However, most of the literature on the problems of missing data focuses on ignorable
missingness (e.g., Schafer and Graham, 2002). Second, data may have outliers (e.g., Hoaglin et al., 1983), particularly in
social and behavioral sciences (e.g., Micceri, 1989). The consequences of applying a normal distribution assumption to such
data include unreliable parameter estimates (e.g., Pan and Fang, 2002), unreliable standard errors and confidence intervals,
and misleading statistical tests and inference (e.g., Yuan and Bentler, 1998). Third, for complex models such as GMMs with
missing data and outliers, maximum likelihoodmethodsmight fail or provide biased estimates (e.g., Yuan and Zhang, 2012).
Most of the previous estimations have relied on maximum likelihood methods for parameter estimation and have carried
out inferences through conventional likelihood procedures (e.g., Song et al., 2014). Fourth, even with effective estimation
methods, model selection in such complex situations becomes extremely difficult. Traditional criteria for model selection,
including Akaike’s Information Criterion (AIC, Akaike, 1974), Bayesian Information Criterion (BIC, Schwarz, 1978), consistent
Akaike’s Information Criterion (CAIC, Bozdogan, 1987), sample-size adjusted Bayesian Information Criterion (ssBIC, Sclove,
1987), and Deviance Information Criterion (DIC, Spiegelhalter et al., 2002), are not uniformly effective due to latent effects
and missing data (e.g., Celeux et al., 2006).

Few studies have discussed how to address these common problems in longitudinal research in the framework of GMMs.
Lu et al. (2011) discussed GMMs with non-ignorable missing data using Bayesian methods. However, they (1) considered
only one type of non-ignorable missingness, (2) assumed data are normally distributed without any outlier, and (3) did not
propose any model selection criterion.

This article extends the study of Lu et al. (2011) and addresses these challenges in GMMs: missing data, outliers,
estimation, and model selection. Regarding missing data, we propose new types of non-ignorable missingness in GMMs
and investigate their influences on model estimation under different situations. Regarding outliers, we use robust models
(e.g., Lange et al., 1989) to minimize the effects of contaminated data. Because convenient robust methods often lead to
other problems such as under-estimation of standard errors (e.g., Poon and Poon, 2002), we adopt t-distributions to deal
with heavy-tailed data (Lin et al., 2004; Zhang et al., 2013). Regarding estimation methods, as Bayesian methods provide
many advantages of estimating complex models (e.g., Dunson, 2000), we propose a full Bayesian approach, which is flexible
enough to estimate a variety of models with different missing data mechanisms, contaminated data, and mixture structure.
Regarding model selection, we propose several selection criteria in the Bayesian context. The performances of these criteria
are investigated under different situations.

In the next section of this article, Section 2, we propose GMMs with different types of missing data and outliers. In
Section 3, we present Bayesian estimationmethods. In Section 4, we propose Bayesian model selection criteria. In Section 5,
we conduct three simulation studies on Bayesian GMMs under different conditions. In Section 6, we demonstrate the
application of the GMMs and the Bayesian method by analyzing real education data on children’s mathematical ability
development. In Section 7, we draw conclusions. The Appendices present the technical details of our analyses.

2. Models

The density function of a growth mixture model is

f (yi) =

K
k=1

πk fk(yi), (1)

where πk is the invariant class probability (or weight) for class k, (k = 1, . . . , K), satisfying 0 ≤ πk ≤ 1 and
K

k=1 πk = 1
(e.g., McLachlan and Peel, 2000), and fk(yi) is the density for the kth class, in which yi is a T × 1 vector of outcomes for
participant i (i = 1, . . . ,N) following a latent growth model

yi = 3ηi + ei,
ηi = β + ξi,

(2)

where ηi is a q × 1 vector of latent effects, 3 is a T × q matrix of factor loadings for ηi, ei is a T × 1 vector of residual or
measurement errors, β is a q × 1 vector of fix-effects, and ξi captures the variation of ηi.

In the Extended Growth Mixture Models (EGMMs, Muthén and Shedden, 1999), πk is not invariant any more for all
individuals in class k. It is allowed to vary individually depending on covariates, so it is expressed as πik(xi). In this study, a
probit link function is usedπi1(xi) = Φ(X ′

i ϕ1),
πik(xi) = Φ(X ′

i ϕk) − Φ(X ′

i ϕk−1), (k = 2, 3, . . . , K − 1)
πiK (xi) = 1 − Φ(X ′

i ϕK−1),
(3)
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