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a b s t r a c t

Several Monte Carlo methods have been proposed for computing marginal likelihoods
in Bayesian analyses. Some of these involve sampling from a sequence of intermediate
distributions between the prior and posterior. A difficulty arises if the support in the
posterior distribution is a proper subset of that in the prior distribution. This can happen in
problems involving latent variables whose support depends upon the data and can make
somemethods inefficient and others invalid. The correction required formodels of this type
is derived and its use is illustrated by finding themarginal likelihoods in two examples. One
concerns a model for competing risks. The other involves a zero-inflated over-dispersed
Poisson model for counts of centipedes, using latent Gaussian variables to capture spatial
dependence.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

The marginal likelihood, also known as the integrated likelihood or the evidence, plays an important role in Bayesian
inference, particularly in model selection and model averaging, where it is used in the computation of Bayes factors and
posterior model probabilities.

Consider data y and a statistical model p(y|θ) which depends on unknowns θ. The marginal likelihood is defined as
p(y) =


p(y|θ)π(θ) dθ, where π(θ) is the prior density. Typically this integral cannot be evaluated in closed form and so

we turn to numerical approximation; see, for example, Friel and Wyse (2012), for a recent review. It is convenient to use
methods which involve Markov chain Monte Carlo (MCMC) sampling. In particular, this allows auxiliary or latent variables
to be included in the unknowns θ and sampled along with the model parameters. We focus primarily on latent variable
problems in this paper.

Amongst the Monte Carlo methods particularly suitable for latent variable problems are Chib’s method (Chib, 1995;
Chib and Jeliazkov, 2001) and techniques which we term intermediate-density-methods. Chib’s method is based on a
rearrangement of Bayes Theorem to express the marginal likelihood in terms of the prior density, likelihood and posterior
density. Evaluating or approximating each term in the resulting identity at a single point in the parameter space then
yields themarginal likelihood approximation. Intermediate-density-methods connect the unnormalised prior and posterior
densities through a sequence of intermediate densities labelled by an index t ∈ [0, 1]. They are derived from more general
approaches for computing ratios of normalising constants and include the power posterior method (Friel and Pettitt, 2008;
Friel et al., 2012), annealed importance sampling (AIS) (Neal, 2001) and linked importance sampling (LIS) (Neal, 2005). The
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unnormalised intermediate density with index t may then be, for example, the product of the unnormalised prior and the
likelihood raised to the power t . An advantage of Chib’s and, in particular, intermediate-density-methods, is the ease with
which they can be programmed, often simply by rearranging code for sampling from the posterior distribution. Both types of
methods can also be very effective. For instance, Germain (2010) found them to provide an easily implemented and accurate
approximation to the marginal likelihoods of hidden Markov models with different numbers of states.

Latent variable problems can have the property that the support of the prior and posterior distributions do not coincide
because the support for the latent variables changes when data are observed. For models with this property, some of the
intermediate-density-methods, such as the power posterior approach, cannot be directly applied whilst others, like AIS, are
likely to be very inefficient in cases where the prior probability of the posterior support is small, such as in multivariate
probit models. Data-dependent support can also present problems for Chib’s method if the likelihood ordinate (typically
the observed data likelihood) is difficult to evaluate. This paper addresses the former of these issues and describes a general
two-stage procedure to correct, or improve the efficiency of, intermediate-density-methods in problems involving data-
dependent support, whilst also highlighting the situations in which implementation of the proposed approach is likely to
be simpler than Chib’s method.

We review intermediate-density-methods for computing marginal likelihoods in Section 2. In Section 3 we discuss the
change of support problemandderive our two-stage approximation procedure. Next, in Section 4we consider two examples.
Section 4.1 concerns a simple model for competing risks and Section 4.2 applies our two-stage procedure to a zero inflated–
over-dispersed Poisson model for a set of centipede count data. In this model, latent Gaussian variables capture the spatial
dependences between the presence and the abundance of centipedes and we compare three variants of the model which
use different parametric forms for the covariance matrix. Finally Section 4.3 provides a numerical comparison between our
proposed method and other, related methods for marginal likelihood approximation.

2. Computing marginal likelihoods using sequences of densities

Consider a pair of density functions pt(θ), t = 0, 1, with pt(θ) = qt(θ)/zt for θ ∈ Θt , where qt(θ) is the unnormalised
density, zt is a normalising constant and Θt is the support of pt . Several techniques for computing marginal likelihoods
are special cases of more general methods for computing ratios of normalising constants, r = z1/z0. Let p0(θ) be the prior
density, π(θ), and let p1(θ) be the posterior density, π(θ|y). Then, if q1(θ) = p(y|θ)π(θ), where p(y|θ) is the likelihood, z1 is
themarginal likelihood, p(y). Typically, the normalising constant of the prior distribution will be known andwe can assume
that z0 = 1. Then the ratio r = z1/z0 = z1 = p(y).

2.1. Computing ratios of normalising constants

Provided that Θ1 ⊆ Θ0, it appears that we might approximate the ratio z1/z0 using simple importance sampling:

z1
z0

= Ep0


q1(θ)
q0(θ)


≃

1
M

M
i=1

q1(θ[i])

q0(θ[i])
, (1)

where Ep0 denotes expectationwith respect to p0 and θ[1], . . . , θ[M] are a sample drawn from p0. However thismethodworks
poorly when the overlap of p0 and p1 is small, as will typically be the case if p0 and p1 represent the prior and posterior and
the posterior is very concentrated relative to the prior.

In response to this problem, bridge sampling (Meng and Wong, 1996) uses an unnormalised density q0.5, with support
Θ0 ∩ Θ1, to provide a ‘‘bridge’’ between p0 and p1. This leads to the identity

z1
z0

=

Ep0


q0.5(θ)
q0(θ)


Ep1


q0.5(θ)
q1(θ)

 , (2)

in which the ratios in the numerator and denominator are each approximated using simple importance sampling, as in (1).
Whereas simple importance sampling requires Θ1 ⊆ Θ0, bridge sampling only requires


Θ0∩Θ1

p0(θ)p1(θ) dθ > 0.
When there is little overlap between p0 and p1, bridge sampling with a single intermediate density will perform poorly.

However we can improve performance by introducing a sequence of intermediate densities, pti(θ) = qti(θ)/zti , θ ∈ Θti , i =

0, . . . , n, between p0 and p1, with 0 = t0 < t1 < · · · < tn = 1. Then the ratio z1/z0 can be expressed as

z1
z0

=

n
i=1

zti
zti−1

. (3)

Each of the ratios zti/zti−1 can then be approximated by simple importance sampling or by bridge sampling using an
unnormalised bridging density qti−0.5 . Provided that each pair pti−1 , pti displays sufficient overlap, this can provide substantial
improvement over standard importance or bridge sampling. In the remainder of this paper, methods based on these ideas
will be called extended importance sampling and extended bridge sampling techniques.
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