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a b s t r a c t

Statistical inference for the models with intractable normalizing constants has attracted
much attention. During the past two decades, various approximation- or simulation-based
methods have been proposed for the problem, such as the Monte Carlo maximum likeli-
hood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian
stochastic approximation Monte Carlo algorithm specifically addresses this problem: It
works by sampling from a sequence of approximate distributions with their average con-
verging to the target posterior distribution, where the approximate distributions can be
achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large
numbers is established for the Bayesian stochastic approximation Monte Carlo estima-
tor under mild conditions. Compared to the Monte Carlo maximum likelihood method,
the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the ini-
tial guess of model parameters. Compared to the auxiliary variable MCMC methods, the
Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for
perfect samples, and thus can be applied to many models for which perfect sampling is
not available or very expensive. The Bayesian stochastic approximation Monte Carlo algo-
rithm also provides a general framework for approximate Bayesian analysis.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In statistics, many models possess an intractable normalizing constant. Examples of such models include the Ising
model used in statistical physics; the Potts model used in image analysis (Hurn et al., 2003; Johnson and Piert, 2009),
the autologistic, autonormal, and pairwise interaction models used in spatial statistics (Besag, 1974; Bognar, 2005); the
exponential random graph model used in social networks (Robins et al., 2007a,b; Snijders et al., 2006), among others. The
problem of Bayesian inference for these models can be posed as follows.

Suppose that we have a dataset generated from a model with the density/mass function given by

f (x|θ) =
p(x, θ)
κ(θ)

, x ∈ X, θ ∈ Θ, (1)

where θ denotes the vector of parameters, and κ(θ) is the normalizing constant which depends on θ and is not available in
closed form. Let π(θ) denote the prior density of θ . The posterior density of θ given the data Z = z can then be expressed as

π(θ |z) ∝
1
κ(θ)

p(z, θ)π(θ). (2)

Since the closed form of κ(θ) is not available, inference for θ has put a great challenge on current statistical methods.
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The Metropolis–Hasting (MH) algorithm cannot be directly applied to simulate from the posterior π(θ |z), as the
acceptance probability would include an unknown normalizing constant ratio κ(θ)/κ(θ ′), where θ ′ denotes the proposed
value. To avoid this obstacle, various approximation-based methods have been proposed in the literature. Besag (1974)
proposed to approximate the likelihood function by a product of a series of conditional likelihood functions by ignoring the
dependence between components of X . This method is simple, but its performance is often not satisfactory, particularly
for the problems for which the dependence between components of X is strong. Geyer and Thompson (1992) proposed to
approximate κ(θ) using Monte Carlo samples generated from a distribution f (x|θ0), where θ0 is an initial estimate of θ . To
be precise, let x(1), . . . , x(m) denote random samples drawn from f (x|θ0), which can be obtained via Markov chain Monte
Carlo (MCMC) simulations, then the log-likelihood function can be approximated by

log fm(z|θ) = log p(z, θ)− log κ(θ0)− log


1
m

m
i=1

p(x(i), θ)/p(x(i), θ0)


, (3)

which approaches log f (z|θ) as m → ∞. The estimatorθ = argmaxθ log fm(z|θ) is called the Monte Carlo maximum
likelihood estimator (MCMLE) of θ . The performance of the MCMLE method depends on the choice of θ0. If θ0 is near the
truemaximum likelihood estimate, themethod usually produces a good estimate of θ . Otherwise, themethodmay converge
to a suboptimal solution or even fail to converge. To alleviate this difficulty, Geyer and Thompson (1992) recommended an
iterative approach, which works as follows:

(a) Simulatem auxiliary samples x(1)t , . . . , x
(m)
t from f (x|θt) using MCMC.

(b) Find θt+1 = argmaxθ log fm(z|θ).

Evenwith this iterative approach, non-convergence is still quite common if θ0 is far from the trueMLE. Liang (2007) proposed
an alternative Monte Carlo approach to approximate κ(θ), where κ(θ) is viewed as a marginal density function of the
unnormalized distribution p(x, θ) and estimated using an adaptive kernel smoothing approach withMonte Carlo draws. On
the other hand, analytical approximations to the normalizing constant function have also been developed for some specific
models, e.g., theMarkov random fieldmodels defined on the cylinder or lattice. See Pettitt et al. (2003), Friel and Rue (2007),
Friel et al. (2009), among others.

As an alternative to the approximation-basedmethods, a class of auxiliary variableMCMCalgorithmshave been proposed
for sampling from the posterior distribution (2). Møller et al. (2006) proposed to augment the posterior distribution π(θ |z)
to π(θ, y|z) by including an auxiliary variable Y . With an appropriate choice of the auxiliary distribution f (y|θ, z) and the
proposal distribution, the normalizing constant ratio κ(θ)/κ(θ ′) can be canceled in simulations. The exchange algorithm
(Murray et al., 2006)works in a similarway to theMøller algorithm; it cancels the normalizing constants ratio in simulations
by including an auxiliary variable in its proposal. Although the Møller and exchange algorithms work well for some discrete
models, such as the Ising and autologistic models, they cannot be applied to many other models for which perfect sampling
is not available. Even for the Ising and autologistic models, perfect sampling can be very expensive when the temperature is
near or below the critical point. Recently, Liang (2010) proposed the doubleMetropolis–Hastings (MH) algorithm,which is to
approximate expensive perfect samples using cheapMCMC samples. Although this algorithmworkswell formanyproblems,
it lacks a theoretical justification for the consistency of the resulting estimator. It is worth mentioning that Walker (2011)
introduced a latent variable method for sampling from the posterior distribution (2). In Walker’s method, the likelihood
function f (x|θ) is augmented with a varying number of latent variables such that the joint likelihood function of x and the
latent variables is tractable, and then the joint likelihood function is sampled using the reversible jump MCMC algorithm
(Green, 1995). This method is mathematically sound, but, due to the difficulty in dimension jumping moves, it can be very
difficult to be applied to the problems for which the dimension of the model (i.e., the dimension of x) is high.

In this paper, we propose a new algorithm, the Bayesian Stochastic Approximation Monte Carlo (BSAMC) algorithm,
for tackling the intractable normalizing constant problem. The BSAMC algorithm works by simulating from a sequence of
approximate distributions, which are obtained using the stochastic approximation Monte Carlo (SAMC) algorithm (Liang
et al., 2007). Let πt(θ |z), t = 1, 2, . . . , denote the sequence of approximate distributions. Let θt denote a sample simulated
from πt(θ |z). Under mild conditions, we show that for any bounded measurable function ϕ(θ),

n
t=1 ϕ(θt)/n converges

almost surely to the posterior mean of ϕ(θ) as n goes to infinity. One significant advantage of BSAMC over the auxiliary
variable MCMC methods is that it avoids the requirement for perfect samples, and thus can be applied to many models for
which perfect sampling is not available or very expensive. Compared to the MCMLE method, BSAMC is very robust to the
choice of θ0 due to the powerful ability of SAMC in sample space exploration. Finally, we note that although BSAMC works
based on SAMC, SAMC itself cannot be directly applied to sample from the posterior π(θ |z). Hence, BSAMC represents
an extension of SAMC for Bayesian analysis. BSAMC also provides a general framework for approximate Bayesian analysis
through simulating from a sequence of approximate distributions with their average converging to the target posterior
distribution.

The remainder of this paper is organized as follows. In Section 2, we describe the BSAMC algorithm and explore its
theoretical properties. In Section 3, we apply BSAMC to Isingmodels along with a comparison with theMCMLEmethod. The
numerical results show that BSAMC performs robustly to the initial guess of θ . In Section 4, we apply BSAMC to autologistic
and autonormal models. In Section 5, we conclude the paper with a brief discussion.



Download English Version:

https://daneshyari.com/en/article/6870413

Download Persian Version:

https://daneshyari.com/article/6870413

Daneshyari.com

https://daneshyari.com/en/article/6870413
https://daneshyari.com/article/6870413
https://daneshyari.com

