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a b s t r a c t

A Bayesian solution is suggested for the modelling of spatial point patterns with
inhomogeneous hard-core radius using Gaussian processes in the regularization. The key
observation is that a straightforward use of the finite Gibbs hard-core process likelihood
together with a log-Gaussian random field prior does not work without penalisation
towards high local packing density. Instead, a nearest neighbour Gibbs process likelihood
is used. This approach to hard-core inhomogeneity is an alternative to the transformation
inhomogeneous hard-core modelling. The computations are based on recent Markovian
approximation results for Gaussian fields. As an application, data on the nest locations of
Sand Martin (Riparia riparia) colony1 on a vertical sand bank are analysed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Observed spatial point patterns are usually assumed to be spatially stationary or, in the finite case, spatially homoge-
neous. However, data consisting of point locations may reveal inhomogeneity in point density, in local structure, or in both.

The present paper deals with Bayesian modelling of finite spatial point patterns with inhibition between the points. It
is assumed that the range of inhibition is spatially inhomogeneous, and this inhomogeneity is modelled through a latent
Gaussian process. As a result a posterior description of the background inhomogeneity is obtained as well as predictions for
further points in the point pattern.

Amotivating example consists of a point pattern of SandMartin’s (Riparia riparia) nests on a vertical sand bank, see Fig. 1.
The figure reveals that the nest holes are highly packed but the packing density varies, partly according to the unobserved
variation of sand composition in the bank. Further examples can be found e.g. in the fields of solid matter physics (Hahn
et al., 2003) and physiology (Nielsen and Vedel Jensen, 2004).

The mainstream of the modelling of inhomogeneous point patterns is focused on the intensity estimation for
inhomogeneous Poisson processes, see e.g. the discussion in Guttorp and Thorarinsdottir (2011). Because of the nature of
the Poisson process, local structures such as inhibition between the points are excluded. Illian et al. (in press) show that
interaction-like effect can be introduced to the Poisson process by adding spatially continuous morphological summaries
as ‘‘constructed covariates’’ for the intensity. In the non-Poisson setting, Vedel Jensen and Nielsen (2000) consider a
model where a homogeneous Markov point process is transformed to an inhomogeneous one. This process class is called
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1 Dataset is attached to the online version.
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Fig. 1. From the top down: Locations of Sand Martin’s nests on a sand bank as will be described in Section 4; data overlaid on a kernel smoothed intensity
field; a simulation of an inhomogeneous Poisson process model overlaid on the mean posterior intensity field; simulation from the new varying range
hard-core model overlaid on a mean posterior predictive intensity field.

‘‘Transformation inhomogeneous Markov’’ (TIM), see also Nielsen and Vedel Jensen (2004) and Hahn et al. (2003). The use
of transformation is a modification of the idea by Sampson and Guttorp (1992) for geostatistical random fields, preceded
by the time acceleration models in survival analysis. The inference for the TIM model is based on finding the most likely
transformation. As an alternative to TIM modelling, Berthelsen and Møller (2008) apply Markov point processes defined in
terms of inhomogeneous self-potential and pairwise interaction function giving a Bayesian solution.

In the present paper it is assumed that the points in a point pattern have a hard-core with smoothly varying radius.
The pattern can be thought to be the set of centre points of non-intersecting spherical objects of variable size. This model is
called a hard spheresmodel, and the radius at a location is tied to the physical size of the object, see e.g.Månsson and Rudemo
(2002). An alternative construction is to associate each point with a radius and define the hard-core area by excluding other
points within the sphere. Then the variable radius can be addressed to the point location. This process is an extension of the
Markov hard-core process (finite Gibbs hard-core process). We adopt the latter point of view.

The Markov hard-core process is defined by the self-potential and pairwise interaction, and both of these contribute to
the Papangelou conditional intensity function, see Illian et al. (2008, p. 149) and van Lieshout (2000, p. 39). However, if we
are close to the case of high packing, then the pairwise interaction (hard-core) dominates, and the spatial distribution of the
hard-core radius has a primary effect. Our suggestion for modelling varying radius hard-core Gibbs processes is bymeans of
latent smooth Gaussian processes, see Rasmussen andWilliams (2006): the hard-core distance for each point is determined
by a random function depending on this Gaussian process.

Two problems will be met in fitting the varying radius hard-core process. The first problem is the intractable scaling
factor in the hard-core Markov point process likelihood which in this case depends also on the unknown hard-core radius
function. The known solutions, importance sampling applied by Bognar (2005) and auxiliary variable method by Møller
et al. (2006), lead to demanding computation. Also, the approximation of the likelihoodwith the pseudo-likelihood function
(Jensen and Møller, 1991) depends on the unknown latent function. Secondly, although the synthesis (i.e. simulation of the
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