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a b s t r a c t

The sparse group lasso optimization problem is solved using a coordinate gradient
descent algorithm. The algorithm is applicable to a broad class of convex loss functions.
Convergence of the algorithm is established, and the algorithm is used to investigate
the performance of the multinomial sparse group lasso classifier. On three different real
data examples the multinomial group lasso clearly outperforms multinomial lasso in
terms of achieved classification error rate and in terms of including fewer features for
the classification. An implementation of the multinomial sparse group lasso algorithm is
available in the R package msgl. Its performance scales well with the problem size as
illustrated by one of the examples considered—a 50 class classification problem with 10 k
features, which amounts to estimating 500 k parameters.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The sparse group lasso is a regularization method that combines the lasso (Tibshirani, 1994) and the group lasso (Meier
et al., 2008). Friedman et al. (2010a) proposed a coordinate descent approach for the sparse group lasso optimization
problem. Simon et al. (2013b) used a generalized gradient descent algorithm for the sparse group lasso and considered
applications of thismethod to linear, logistic andCox regressions.Wepresent a sparse group lasso algorithm suitable for high
dimensional problems. This algorithm is applicable to a broad class of convex loss functions. In the algorithm we combine
three non-differentiable optimizationmethods: the coordinate gradient descent (Tseng and Yun, 2009), the block coordinate
descent (Tseng, 2001) and a modified coordinate descent method.

Our main application is to multiclass classification based on themultinomial regressionmodel. The lasso penalty has, for
some time, been considered as a regularization approach formultinomial regression (Friedmanet al., 2010b). Theparameters
in the multinomial model are, however, naturally structured, with multiple parameters corresponding to one feature, and
the lasso penalty does not take this structure into account. To accommodate for this we suggest to add a group lasso term
with the parameters corresponding to the same feature grouped together. The resulting penalty is known as the sparse
group lasso penalty. We found that using the sparse group lasso penalty for multinomial regression generally improved the
performance of the estimated classifier and reduced the number of features included in the model.

The formulation of an efficient and robust sparse group lasso algorithm is not straightforward due to non-differentiability
of the penalty. First, the sparse group lasso penalty is not completely separable, which is problematic when using a standard
coordinate descent scheme. To obtain a robust algorithm an adjustment is necessary. Our solution, which efficiently treats
the singularity at zero that cannot be separated out, is a minor modification of the coordinate descent algorithm. Second,
our algorithm is a Newton type algorithm, hence we sequentially optimize penalized quadratic approximations of the loss
function. This approach raises another challenge: how to reduce the costs of computing the Hessian? In Section 3.6 we show
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that an upper bound on the Hessian is sufficient to determine whether the minimum over a block of coefficients is attained
at zero. This approach enables us to update a large percentage of the blocks without computing the complete Hessian. In
this way we reduce the run-time, provided that the upper bound of the Hessian can be computed efficiently. We found that
this approach reduces the run-time on large data sets by a factor of more than 2.

Our focus is on applications of the multinomial sparse group lasso to problems with many classes. For this purpose we
have investigated three multiclass classification problems. We found that multinomial group lasso and sparse group lasso
performwell on these problems. The error rateswere substantially lower than the best obtainedwithmultinomial lasso, and
the low error rates were achieved for models with fewer features having non-zero coefficients. For example, we consider a
text classification problem consisting of Amazon reviews with 50 classes and 10 k textual features. This problem showed a
large improvement in the error rates: from approximately 40% for the lasso to less than 20% for the group lasso.

We provide a generic implementation of the sparse group lasso algorithm in the form of a C++ template library.
The implementation for multinomial and logistic sparse group lasso regressions is available as an R package. For our
implementation the time to compute the sparse group lasso solution is of the same order of magnitude as the time required
for the multinomial lasso algorithm as implemented in the R package glmnet. The computation time of our implementation
scales well with the problem size.

1.1. Sparse group lasso

Consider a convex, bounded below and twice continuously differentiable function f : Rn
→ R. We say that β̂ ∈ Rn is a

sparse group lasso minimizer if it is a solution to the unconstrained convex optimization problem

minimize f + λΦ (1)

where Φ : Rn
→ R is the sparse group lasso penalty (defined below) and λ > 0.

Before defining the sparse group lasso penalty some notation is needed. We decompose the search space

Rn
= Rn1 × · · · × Rnm

into m ∈ N blocks having dimensions ni ∈ N for i = 1, . . . ,m, hence n = n1 + · · · + nm. For a vector β ∈ Rn we write
β = (β(1), . . . , β(m)) where β(1)

∈ Rn1 , . . . , β(m)
∈ Rnm . For J = 1, . . . ,m we call β(J) the J ’th block of β . We use the

notation β
(J)
i to denote the i’th coordinate of the J ’th block of β , whereas βi is the i’th coordinate of β .

Definition 1 (Sparse Group Lasso Penalty). The sparse group lasso penalty is defined as

Φ(β)
def
=(1− α)

m
J=1

γJ
β(J)


2 + α

n
i=1

ξi |βi|

for α ∈ [0, 1], group weights γ ∈ [0,∞)m, and parameter weights ξ = (ξ (1), . . . , ξ (m)) ∈ [0,∞)n where ξ (1)
∈

[0,∞)n1 , . . . , ξ (m)
∈ [0,∞)nm .

The sparse group lasso penalty includes the lasso penalty (α = 1) and the group lasso penalty (α = 0). Note also that for
sufficiently large values of λ the solution of (1) is zero. The infimum of these, denoted λmax, is computable, see Section 3.2.

We emphasize that the sparse group lasso penalty is specified by

• a grouping of the parameters β = (β(1), . . . , β(m)),
• and the weights α, γ and ξ .

It is well known that the lasso penalty results in sparse solutions to (1), while the group lasso penalty results in groupwise
sparse solutions (that is, the entire group of parameters is zero or non-zero). However group lasso does not give sparsity
within groups — sparse group lasso does.

In the second part of the paper we develop an algorithm for solving the optimization problem (1). The convergence of the
algorithm is established for any sparse group lasso penalty, regardless of how the parameters are grouped. For multinomial
regression, as considered in the next section, we restrict attention to a specific grouping of the parameters that reflects the
features. In the symmetric parametrization of the multinomial regression model with K classes there are K parameters per
feature. Our suggestion is to group these K parameters together. Thus we do not group the features, only the parameters
associatedwith each feature. For the exampleswe considered this particular grouping resulted inmodelswith fewer features
having non-zero parameters compared to ordinary lasso penalization. More importantly, the error rates were typically also
smaller.

Our msgl R package supports the particular grouping for multinomial regression as well as additional groupings of the
features, i.e. the number of parameters in each group is a multiple of K . The sgl C++ template library can be configured to
handle any grouping.
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