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a b s t r a c t

Generalized fiducial inference is closely related to the Dempster–Shafer theory of belief
functions. It is a general methodology for constructing a distribution on a (possibly
vector-valued) model parameter without the use of any prior distribution. The resulting
distribution is called the generalized fiducial distribution, which can be applied to form
estimates and confidence intervals for the model parameter. Previous studies have shown
that such estimates and confidence intervals possess excellent frequentist properties.
Therefore it is useful and advantageous to be able to calculate the generalized fiducial
distribution, or at least to be able to simulate a randomsample of themodel parameter from
it. For a small class of problems this generalized fiducial distribution can be analytically
derived, while for some other problems its exact form is unknown or hard to obtain. A
new computationalmethod for conducting generalized fiducial inferencewithout knowing
the exact closed form of the generalized fiducial distribution is proposed. It is shown
that this computational method enjoys desirable theoretical and empirical properties.
Consequently,with this proposedmethod the applicability of generalized fiducial inference
is enhanced.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fisher (1930) introduced the idea of fiducial probability and fiducial inference as an attempt to overcomewhat he saw as
a serious deficiency of the Bayesian approach to inference: the use of a prior distribution on model parameters even when
no prior information is available. Fiducial inference created some controversy once Fisher’s contemporaries realized that,
unlike earlier simple applications involving a single parameter, fiducial inference often led to procedures thatwere not exact
in the frequentist sense and did not possess other properties claimed by Fisher (Lindley, 1958; Zabell, 1992). An interested
reader can consult Section 2 of Hannig (2009) for a discussion of the history of fiducial inference and a more complete list
of references.

Tsui and Weerahandi (1989) and Weerahandi (1993) proposed a new approach for constructing hypothesis tests using
the concept of generalized P-values and generalized confidence intervals. Hannig et al. (2006) established a direct connection
between fiducial intervals and generalized confidence intervals and proved the asymptotic frequentist correctness of such
intervals. These ideas were unified for parametric problems in Hannig (2009) without requiring any group structure related
to the model. This unification is termed generalized fiducial inference and has been found to have excellent theoretical and
empirical properties for a number of practical applications (E et al., 2008; Hannig and Lee, 2009;Wandler andHannig, 2011).
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The Dempster–Shafer theory of belief functions (Dempster, 2008; Shafer, 2011) is closely related to the generalized
fiducial inference. In both cases a relationship between the data, X, and the parameters, θ ∈ 2 is expressed in a functional
form; i.e.,

X = G(θ,U), (1.1)

where U is the random component of the structural equation, a random variable or vector whose distribution is completely
known and independent of any parameters. The Eq. (1.1) is typically called data-generating equation, structural equation or
a-equation.

After observing a fixed realized value of X, say x0, one can invert the Eq. (1.1) to define a belief function on the parameter
space 2. To explain the idea behind the formal definition of this belief function, suppose first that the structural relation
(1.1) can be inverted, solved for θ , and the inverse Q(x0,u) always exists. That is, for any observed x0 and for all u, there is
always a unique θ solving x0 = G(θ,u). (The more realistic case where the inverse Q does not exist will be discussed in the
next section.) Since the distribution ofU is completely known, one can always generate a random sample ũ1, . . . , ũM from it.
This random sample ofU is transformed into a random sample of θ via the inverseQ: {θ̃1 = Q(x0, ũ1), . . . , θ̃M = Q(x0, ũM)},
and the resulting random sample θ̃1, . . . , θ̃M can be used to obtain estimates and approximate confidence intervals for θ.
From this one can see that a probability density function r(θ) for θ is implicitly defined. The corresponding distribution is
termed the generalized fiducial distribution, which, in this case, is equivalent to the belief function.

This recipe defines a joint distribution on the parameter space. When making inference about individual parameters,
we then use the marginal of this joint distribution. It is well known that marginalization together with different structural
equations can lead to non-uniqueness; i.e., several different marginal fiducial distributions, (e.g., Dawid et al., 1973). We
do not see this as a problem because our goal is not to define the unique fiducial distribution. Instead, we are aiming to
define a distribution on the parameter space with good inferential properties. Approximate confidence intervals based on
the marginal fiducial distribution lead often to asymptotically correct coverage (Hannig, 2009, 2013). More importantly,
such confidence intervals have been shown to have very good small sample properties in a number of applied problems.
For computational reasons, we also recommend using structural equations that have simple form so that the calculations
described in Section 3 can be done in a closed form; see for example Section 4.3. More discussion on the choice of structural
equation can be found in Section 5 of Hannig (2013).

We remark that there is a new exciting inferential approach developed by Zhang and Liu (2011) that in some situations
does not require a computation of the whole distribution, making it attractive for various problems. However, this method
seems to have a requirement that the structural equation is invertible almost surely (Zhang and Liu, 2011, Theorem 3.1).
Such an assumption is not reasonable when the dimension of the minimal sufficient statistics is larger than the number of
parameters; e.g., the Cauchy regression problem to be discussed below.

The density function r(θ) thus plays an important role in the generalized fiducial approach to data analysis: it can be
applied to derive estimates and construct confidence intervals for the parameter θ, in a similar manner as the posterior
density function in the Bayesian paradigm. However, for many statistical problems, the exact form of r(θ) cannot be easily
calculated. Amajor contribution of this article is to propose practical methods for computing integrals of r(θ)when a closed
form expression for r(θ) is not readily available. Consequently, this article greatly enhances the applicability of generalized
fiducial inference for statistical problems.

The rest of this article is organized as follows. Firstly some background material is presented in Section 2. Then some
computational ideas are developed in Section 3 for simulating a random sample from r(θ) when the exact form of r(θ)
is unknown. Section 4 provides some simulation studies to demonstrate the advantages of the proposed computational
approach. Lastly, concluding remarks are offered in Section 5.

2. Background

This section provides some essential background material. First recall that in the discussion above the inverse Q is
assumed to exist. In practice this is likely to be wrong and the inverse Q does not exist. This can happen for two opposing
reasons: for some value of x0 andu, either there ismore than one θ, or there is no θ satisfying x0 = G(θ,u). The first situation
can be dealtwith by using themechanics of Dempster–Shafer calculus (Dempster, 2008); see also Section 4 of Hannig (2009).
The main idea is that the belief function for any set has three components summarizing (i) the strength evidence for the
set, (ii) the strength of the evidence against the set, and (iii) the strength of the evidence that is inconclusive. Hannig (2013)
shows that inmany statistical problems of practical interest the portion of the evidence that is inconclusive is asymptotically
negligible.

For the second situation where no θ satisfies x0 = G(θ,u), Hannig (2009) suggests removing the values of u for which
there is no solution from the sample space and then re-normalizing the probabilities; i.e., using the distribution of U
conditional on the event that ‘‘there is at least one θ solving the equation x0 = G(θ,U)’’. The rationale for this choice is
that we know that the observed data x0 were generated using some fixed unknown θ0 and u0; i.e., x0 = G(θ0,u0). The
information that the solution of the equation x0 = G(θ,U) exists for the true U = u0 is available to us in addition to
knowing the distribution of U. The values of u for which x0 = G(· ,u) does not have a solution could not be the true u0
hence only the values of u for which there is a solution should be considered in the definition of the generalized fiducial



Download	English	Version:

https://daneshyari.com/en/article/6870537

Download	Persian	Version:

https://daneshyari.com/article/6870537

Daneshyari.com

https://daneshyari.com/en/article/6870537
https://daneshyari.com/article/6870537
https://daneshyari.com/

