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a b s t r a c t

Bayesian optimal designs for binary longitudinal responses analyzed with mixed logistic
regression describing a linear time effect are considered. In order to find the optimal
number and allocations of time points, for different priors, cost constraints and covariance
structures of the random effects, a scalar function of the approximate information matrix
based on the first order penalized quasi likelihood (PQL1) is optimized. To overcome the
problem of dependence of Bayesian designs on the choice of prior distributions, maximin
Bayesian D-optimal designs are proposed. The results show that the optimal number of
time points depends on the subject-to-measurement cost ratio and increases with the cost
ratio. Furthermore, maximin Bayesian D-optimal designs are highly efficient and robust
under changes in priors. Locally D-optimal designs are also investigated and maximin
locally D-optimal designs are found to have much lower minimum relative efficiency
and fewer time points than maximin Bayesian D-optimal designs. When comparing the
efficiencies of designs with equidistant time points with the Bayesian D-optimal designs, it
was found that three or four equidistant time points are advisable for small cost ratios and
five or six equidistant time points for large cost ratios.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades the design of longitudinal studies for dichotomous data has not received much attention from
statisticians. To a large extent the precision of estimators of the unknown parameters of the statistical model depends on the
design used in the experiment (Khuri et al., 2006). A researcher designing a longitudinal study has to decide on the number
and allocation of time points. Optimal design theory can help in making this decision. However, optimal design depends
on the unknown parameter values in non-linear models like the logistic regression model. Much effort has been devoted to
this problem. A common approach is to design an experiment to be efficient for a best guess of the parameter values, which
leads to locally optimal designs (see, e.g. Chernoff, 1953; Abdelbasit and Plackett, 1983). Such a design, however, may not
be efficient for other parameter values. Thus, the ability to find locally optimal designs still faces the serious problem of how
to take into account the uncertainty about the parameter values.

To handle the problem of local optimality, threemethods are proposed in the literature namely, the sequential procedure
(see, e.g. Abdelbasit and Plackett, 1983; Wu, 1985), the minimax or maximin approach (see, e.g. Dette, 1997; Ouwens et al.,
2002; Tekle et al., 2008; Tan, 2011), and the use of Bayesianmethods, described by Chaloner and Larntz (1989), Chaloner and
Verdinelli (1995), Atkinson et al. (2007), Tommasi and López-Fidalgo (2010), and Drovandi et al. (2013). Due to restrictions
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on the length of the research period, the sequential approximation of an optimal design may not be feasible. A potential
objection to the maximin approach is that the maximin design may occur at the edges of the parameter space and, if some
points in the parameter space have a very lowprobability, then theirweightmay be over-emphasized (Atkinson et al., 2007).

In the present paper, we will use the Bayesian approach, which is a more natural approach that formally accounts for the
prior uncertainty of the parameter values. The Bayesian design literature outside the normal linearmodel ismostly restricted
to binary response models (see, e.g. Khuri et al., 2006). Optimal designs for fixed effects models for binary data, especially
logistic models have been investigated in the literature. Optimal designs were discussed by Bischoff (1993), Mentrē et al.
(1997), Atkins and Cheng (1999), Tan and Berger (1999), Berger and Tan (2004) and Berger and Wong (2009) for the linear
random effects model. Recently, Ouwens et al. (2006) and Tekle et al. (2008) have extended the work on optimal designs
for logistic models with random effects usingmaximin D-optimal designs. However, to the authors’ knowledge no work has
been done on Bayesian optimal designs for longitudinal studies with a binary response. In this paper, we will investigate
numerically Bayesian D-optimal designs for the two parameter logistic mixed effects model with repeated measures of a
binary response.

The paper is organized as follows. The next section introduces the logistic mixed effects model and the variance–
covariancematrix of parameter estimators. In Section 3 the BayesianD-optimality criterion and the corresponding algorithm
to construct these designs are given as well as a discussion of a linear cost function and the relative efficiency as a measure
for the comparison of designs. In Section 4 a numerical study and its results are presented, followed by the conclusions in
Section 5.

2. Logistic mixed effects models

Let the q×1vector yi = (yi1, . . . , yiq)′ be the binary responses yij (either 0 or 1) of subject i at q timepoints, i = 1, 2, . . . ,N
and j = 1, . . . , q. It is assumed that, conditional on the subject-specific random effect vector bi, the binary responses yij are
independently Bernoulli distributedwith probability of success p(yij = 1|bi). These probabilities are related to the fixed and
random-effects via the logit link. The corresponding logistic mixed effects model is given by:

logit(p(yij = 1|bi)) = log


p(yij = 1|bi)

1 − p(yij = 1|bi)


= x′

jβ + z ′

jbi, (1)

where the p × 1 vector xj is the design vector of the explanatory variables at the jth measurement for subject i, β is the
corresponding p×1 vector of unknown fixed effects, and zj is the r ×1 design vector for the random effects that is usually a
subset of vector xj, bi is the corresponding r ×1 vector of unknown random effects, which is assumed to have amultivariate
normal distribution with mean zero and covariance matrix D.

To simplify, let us assume that all subjects have measurements at the same time points, but this can be relaxed. In this
paper, we consider a linear (p = 2) time effect, i.e., the design vector is x′

j = (1 tj) and β = (β0 β1)
′, where tj is the time

point of the jth measurement, and β0 and β1 are the fixed intercept and slope effects. Suppose that for the linear time effect,
a random intercept and random slope are assumed. The design vector is then x′

j = z ′

j = (1 tj) and bi = (b0i b1i)′, where b0i
and b1i are the corresponding random (subject-specific) deviations from these fixed effects. Thus, according to model (1),
the log-odds of a positive response for subject i at time tj is given by:

logit(p(yij = 1|bi)) = (β0 + b0i) + (β1 + b1i)tj. (2)

The objective of this paper is to determine the optimal number of time points q and the optimal allocation of these time
points tj (j = 1, . . . , q), where ‘optimal’ means that the parameters β are estimated as efficiently as possible.

2.1. Variance–covariance matrix of the parameter estimators

The log-likelihood cannot bewritten down in closed formdue to the randomeffects inmodel (1). Hence, either numerical
methods or approximations to the log-likelihood must be used. Numerical methods require large computational resources
and more importantly they require full knowledge of the data (Moerbeek et al., 2003; Han and Chaloner, 2004; Tekle et al.,
2008), making them computationally inconvenient for optimal design procedures. Therefore, we will use an approximate
information matrix based on a first order penalized quasi-likelihood (PQL1). See Breslow and Clayton (1993), and Jang and
Lim (2009) for details. PQL1 performs best in terms of point estimation since it produces the smallest mean squared error
(MSE) and the bias of the estimators decreases as the sample size increases (Breslow and Clayton, 1993; Moerbeek et al.,
2003; Jang and Lim, 2009). The asymptotic variance–covariance matrix of β̂, which is the inverse of the information matrix
of the parameters, is approximated in PQL1 by:

var(β̂) ≈ (X ′V−1X)−1, (3)

where β̂ is the estimator of β for the logistic mixed-effect model (1), X is the Nq × p design matrix formed by stacking {x′

j}

for N subjects, and the Nq × Nq block-diagonal matrix V has N blocks of q × q variance–covariance matrices given by:

vi ≈ w−1
i + Z D Z ′, (4)
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