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a b s t r a c t

The problem of determining optimal designs for least squares estimation is considered in
the common linear regression model with correlated observations. The approach is based
on the determination of ‘nearly’ universally optimal designs, even in the case where the
universally optimal design does not exist. For this purpose, a new optimality criterion
which reflects the distance between a given design and an ideal universally optimal design
is introduced. A necessary condition for the optimality of a given design is established.
Numerical methods for constructing these designs are proposed and applied for the
determination of optimal designs in a number of specific instances. The results indicate
that the new ‘nearly’ universally optimal designs have good efficiencies with respect to
common optimality criteria.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the common linear regression model

y(x) = θ1f1(x)+ · · · + θmfm(x)+ ε(x), (1)

where f1(x), . . . , fm(x) are linearly independent continuous functions, ε(x) denotes a random error process or field,
θ1, . . . , θm are unknown parameters, and x is the explanatory variable, which varies in a compact design space X ⊂ Rd. We
assume that N observations, say y1, . . . , yN , can be taken at experimental conditions x1, . . . , xN to estimate the parameters
in the linear regression model (1). Suppose that ε(x) is a stochastic process with

E[ε(x)] = 0, E[ε(x)ε(x′)] = K(x, x′), x, x′
∈ X. (2)

Throughout this paper, we call the function K(x, x′) a covariance kernel. An important case appears when the error process
is stationary and the covariance kernel is of the form K(x, x′) = σ 2ρ(∥x − x′

∥). If ρ(0) = 1, the function ρ(·) is called the
correlation function, and, if ρ(t) → ∞ as t → 0, the function ρ(·) is a singular covariance function. Regression models
with correlated errors are often used in practice, for example, in analysis of spatial models (Fedorov, 1996; Müller, 2007),
computer experiments (Bates et al., 1996), and nonlinear models of chemical processes (Dette et al., 2010; Ucinski and
Atkinson, 2004).

If N observations, say Y = (y1, . . . , yN)T , are available at experimental conditions x1, . . . , xN , and the covariance
kernel is known, then the vector of parameters can be estimated by the weighted least squares method, that is, by
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θ̂ = (XT6−1X)−1XT6−1Y , where X = (fi(xj))
i=1,...,m
j=1,...,N is an N × m matrix and 6 = (K(xi, xj))i,j=1,...,N is an N × N matrix.

We assume that points x1, . . . , xN are such that matrices 6 and XT6−1X are invertible. Note that the estimator θ̂ is the best
unbiased linear estimator (BLUE) of θ , and its variance–covariance matrix is given by

Var(θ̂) = (XT6−1X)−1.

If the correlation structure of the process is not known, one usually uses the ordinary least squares estimator θ̃ = (XTX)−1

XTY , which has the covariance matrix

Var(θ̃) = (XTX)−1XT6X(XTX)−1. (3)

An exact experimental design {x1, . . . , xN} is a collection of N points from the design space X, which defines the time
points or experimental conditions where observations are taken. Optimal designs for weighted or ordinary least squares
estimation minimize a functional of the covariance matrix of the weighted or ordinary least squares estimator, respec-
tively, and numerous optimality criteria have been proposed in the literature to discriminate between competing designs
(see Pukelsheim, 2006).

Exact optimal designs for specific linear models with correlated observations have been investigated in Dette et al.
(2008b), Kiseľák and Stehlík (2008), and Harman and Štulajter (2010). Because even in simple models exact optimal designs
are difficult to find, most authors use asymptotic arguments to determine efficient designs for the estimation of the model
parameters (see Sacks and Ylvisaker, 1966, 1968; Bickel and Herzberg, 1979, or Zhigljavsky et al., 2010).

Sacks and Ylvisaker (1966, 1968) andNäther (1985, Chapter 4) assumed that the design points {x1, . . . , xN} are generated
by the quantiles of a distribution function; that is, xi = a((i−1)/(N−1)), i = 1, . . . ,N,where the function a : [0, 1] → X
is the inverse of a distribution function. Let ξN denote a normalized design supported atN points {x1, . . . , xN}with theweight
1/N assigned to each point. Then the covariance matrix of the least squares estimator θ̃ given in (3) can be represented as

Var(θ̃) = D(ξN) = M−1(ξN)B(ξN , ξN)M−1(ξN), (4)

where the matricesM(ξ) and B(ξ , ν) are defined by

M(ξ) =


f (u)f T (u)ξ(du), (5)

B(ξ , ν) =


K(u, v)f (u)f T (v)ξ(du)ν(dv), (6)

respectively (the integration is always taken over the setX), and f (u) =

f1(u), . . . , fm(u)

T
denotes the vector of regression

functions. We call any probability measure ξ on X an approximate design or simply a design; however, its interpretation in
practice is different from the one given in Kiefer (1974), where, in the case of a discrete design ξ = {x1, . . . , xn;w1, . . . , wn},
the weightwi means the relative proportion of observations performed at the point xi. In the case of correlated errors, only
one realization of a stochastic process is usually observed, implying that no replication of design points is needed, and in
practice design points are computed as quantiles of the cumulative distribution function defined by ξ ; this rule applies
independently of whether ξ is a discrete or continuous probability measure (or a mixture of the two). If some points in the
collection of quantiles replicate (this can happen if N is small and the optimal design is discrete), we can replace the points
which replicate by other points that are near to them. The definitions of the matrices M(ξ) and B(ξ , ξ) can be extended to
an arbitrary design ξ , provided that the corresponding integrals exist. The matrix

D(ξ) = M−1(ξ)B(ξ , ξ)M−1(ξ) (7)

is called the covariance matrix for the design ξ , and can be defined for any probability measure ξ supported on the design
space X such that the matrices B(ξ , ξ) and M−1(ξ) are well defined. This set will be denoted by Ξ . We assume that the
design set X has enough points so that the setΞ is non-empty; that is, there exists at least one design ξ ∈ Ξ .

Optimal designs for regression models with dependent data have been investigated mainly for the location scale model.
The difficulties in a general development of the optimal design theory for correlated observations can be explained by
the different structure of the covariance of the least squares estimator in model (1), which is of the form M−1BM−1. As
a consequence, the corresponding design problems are in general not convex (except for the location scale model where
m = 1 and f1(u) ≡ 1). Recently, Dette et al. (2011) derived universally optimal designs for regression models of arbitrary
dimension if the corresponding regression functions are eigenfunctions of an integral operator defined by the covariance
kernel of the error process. For example, the design with arcsine density is universally optimal for the polynomial model
with logarithmic covariance kernel. On the other hand, there aremany situations where this assumption is not satisfied, and
in these cases there may not exist a universally optimal design.

The present paper is devoted to the numerical construction of ‘nearly’ universally optimal designs for regression models
in such situations. This means that we consider model (1) with m > 1 parameters in the case where a universally optimal
design does not exist. In Section 2, we introduce a new optimality criterion which reflects the distance between a given
design and an ideal universally optimal design. A necessary condition for the optimality of a given design is established in
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