Computational Statistics and Data Analysis 71 (2014) 1147-1158

Contents lists available at ScienceDirect = <°MPl;TTﬂIIgT':g§

& DATA ANALYSIS

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda ‘®E -
Augmenting supersaturated designs with Bayesian @CwssMark

D-optimality

Alex J. Gutman®>*, Edward D. White, Dennis KJ. Lin9, Raymond R. Hill €

2 Center for Operational Analysis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA

b Riverside Research, Beavercreek, OH 45431, USA

¢ Department of Mathematics & Statistics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA
d Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA

€ Department of Operational Sciences, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA

ARTICLE INFO ABSTRACT
Artic{e history: A methodology is developed to add runs to existing supersaturated designs. The technique
Received 12 March 2013 uses information from the analysis of the initial experiment to choose the best possible

Received in revised form 6 September 2013
Accepted 12 September 2013
Available online 23 September 2013

follow-up runs. After analysis of the initial data, factors are classified into one of three
groups: primary, secondary, and potential. Runs are added to maximize a Bayesian
D-optimality criterion to increase the information gained about those factors. Simulation
results show the method can outperform existing supersaturated design augmentation
strategies that add runs without analyzing the initial response variables.
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1. Introduction

Screening designs are used in the early stages of industrial and computer experiments to discover which input factors
have major effects on a system'’s output. A screening experiment is intended to remove the negligible, or inactive, factors
from further experiments, allowing the investigator to focus on the important, or active, factors. In a large set of factors,
relatively few are likely to be active, a concept called effect sparsity (Box and Meyer, 1986). Traditional screening methods
for k factors, like two-level 2¥~P fractional factorial (Box et al., 2005) or Plackett-Burman designs (Plackett and Burman,
1946), require at least k + 1 experimental runs to separate the few active factors from the many inactive. But, when k
is large or experimental runs are prohibitively expensive, the experimenter requires alternative designs that can screen k
factorsinn < k 4+ 1 runs. Supersaturated designs (SSDs) are one such technique.

SSDs were introduced by Satterthwaite (1959) and Booth and Cox (1962) but did not receive considerable attention until
Lin (1993) and Wu (1993) renewed interest in the field, which continues today. The focus of an SSD is on identifying the
active main effects in a linear model. Consider an experiment with k factors and n runs. The underlying linear main-effect
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model is represented as:

y=pF1+pBxi+ -+ Bxxk +t €e=XB + ¢ (1)
where y is the response vector, 8 = (8o, ..., Br)" is the p x 1 vector of unknown model parameters (p = k + 1), and
€ ~ N(0, o%I,,) is the error term. The model matrix X equals (1|S), where 1isann x 1 column of I'sand § = (X;] - - - |X¢)

is the design matrix. The rows of S contain the k factor level settings for the n experimental runs. For clarity, we adopt the
notation in Gupta et al. (2010) and let SSD(n, k) = S represent an SSD with n runs and k factors.

An SSD(n, k) with model matrix X is typically constructed to optimize a criterion that minimizes the bias of the parameter
estimates. For two-level designs, in which factor levels are coded as &1, the most popular criterion is E(s?). Denote the
(i, j)th element of X'X as s;. E(s®) is defined as E(s*) = Y_,_; s7/(p(p — 1)/2). A small E(s*) implies the average correlations
between factor columns are as small as possible (see Nguyen (l 1996), Bulutoglu and Cheng (2004) and Suen and Das (2010),
and references therein for more on E (s?)-optimal designs). Another popular construction technique is based on the Bayesian
D-optimality criterion by Jones et al. (2008), discussed in Sections 2 and 3. An overview of other design criteria for SSDs,
including criteria for designs with more than two levels, can be found in Lin (2003).

Regardless of the construction method, the analysis of SSDs is rather challenging. Since n < k+ 1, X'Xiis singular and the
ordinary least squares estimates, b = (X’X)~!X'y, cannot be calculated. Due to effect sparsity, most of the §; terms in (1)
are assumed to be zero, but choosing which factors to remove from the model is difficult. We refer the reader to Gupta and
Kohli (2008) and Georgiou (2012) for reviews of proposed analysis methods, but we note that no method is infallible. There
is a tradeoff between the economy of a design and the information gained from the experiment. The experimenter risks
classifying an inactive factor as active (a Type I error), or worse, classifying an active factor as inactive (a Type II error). For
this reason, screening designs are not intended to be utilized for an “all-encompassing” experiment, but rather as the first
stage in a sequence of experiments (Box, 1992). This is especially pertinent with SSDs because the original analysis results
are not always definitive, a consequence of the inability to simultaneously estimate all main-effects.

Adding follow-up runs to a design is a useful way to clarify or confirm initial results and guide the next phase of
experimentation. The notion of sequential experimentation is a well-established approach in experimental design: Box
(1992) provided general guidelines to consider, and traditional augmentation strategies like fold-over designs and the
addition of center points are described in most experimental design textbooks (e.g. Montgomery (2009) and Wu and Hamada
(2000)). However, the idea of augmenting SSDs has only recently been explored. Consider the following.

Suppose after running an SSD(n1, k), the experimenter can afford n, more runs to resolve ambiguities. What is the best
way to augment the original design to reduce uncertainty and get the most information out of the final SSD(n; + n», k)?
This is a relatively new research area. Two papers by Gupta et al. (2010, 2012) describe methods to add rows to two-level
and s-level designs, respectively. With Gupta et al.’s method, E(s?)-optimal designs are augmented with additional runs to
create a new class of “extended E (s*)-optimal” designs. Suen and Das (2010) used a similar approach to add or remove one
row from an existing E (s*)-optimal design to make a new E(s?)-optimal design. However, in the current methods, there is
no effort to analyze the initial results before adding runs. After running an SSD(n1, k), an experimenter should have some
useful information about the process. Indeed, that is the motivation for running the experiment in the first place.

The focus of this paper is to present an alternative approach to the extended-E (s*) augmentation technique presented
in Gupta et al. (2010). Our goal is to take the information gained from the initial design, SSD(ny, k), identify and classify
factors of interest, and prioritize the additional n, runs to get the most information from the final design, SSD(n; + ny, k).
Specifically, we propose an SSD augmentation strategy using the Bayesian D-optimality criterion from DuMouchel and Jones
(1994) and Jones et al. (2008). Our approach has several benefits over current methods:

1. It uses information from the first n; runs to strategically plan the n, follow-up runs;

2. It can augment any SSD built from any construction method or optimality criterion;

3. It can add any number of runs; and

4, Tt uses the Coordinate-Exchange Algorithm (Meyer and Nachtsheim, 1995), a polynomial-time algorithm.

Like Guptaetal.(2010), we assume additional runs become available after the first experiment and that n, is provided by a
decision maker. This is inherently different than a two-stage design where an experimenter purposefully partitions the allot-
ted screening budget into two parts. SSDs are used when resources are heavily constrained, so had all the runs been available
in the screening budget from the beginning, the experimenter would likely have chosen a design to accommodate all runs.

The next section reviews the relevant background of three key concepts: Bayesian D-optimality, the Coordinate-Exchange
Algorithm, and algorithmic augmentation strategies for standard designs. Section 3 presents our approach to augment SSDs
using information from the initial runs. Section 4 compares the performance of Bayesian D-optimal augmented designs
with extended E(s?)-optimal designs by highlighting examples where using information from the first runs leads to better
recommendations than adding runs to maintain E(s*)-optimality. We conclude with a discussion in Section 5.

2. Preliminaries
2.1. Bayesian D-optimality

D-optimality is a popular design criterion for traditional designs with an assumed n x k model matrix X with n > k. The
goal of D-optimality is to reduce the error variances of the least squares estimates, given by o%(X'X) . This is accomplished
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