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a b s t r a c t

A fast mean field variational Bayes (MFVB) approach to nonparametric regression when
the predictors are subject to classical measurement error is investigated. It is shown that
the use of such technology to themeasurement error setting achieves reasonable accuracy.
In tandemwith themethodological development, a customizedMarkov chainMonte Carlo
method is developed to facilitate the evaluation of accuracy of the MFVB method.

Crown Copyright© 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Flexible regression where the predictors are subject to measurement error continues to be an active area of research in
the 2000s (Mallick et al., 2002; Liang et al., 2003; Carroll et al., 2004; Ganguli et al., 2005; Carroll et al., 2008) and is likely to
be so in the 2010s. Carroll et al. (2006) offers a recent and comprehensive summary of the area.

Fitting and inference in such models is notoriously challenging. Berry et al. (2002) devised an elegant hierarchical
Bayes approach to the simplest version of the problem and described Markov chain Monte Carlo (MCMC) based inference.
Extensions have been considered by Carroll et al. (2004) and Ganguli et al. (2005). However, inference based on MCMC can
be very slow for such models and may take hours if using BUGS (Lunn et al., 2000).

In this paper we investigate a faster mean field variational Bayes (MFVB) alternative to the problem. For an introduction
to such techniques, see Bishop (2006) and Ormerod andWand (2010) or Wand et al. (2011). We show that the transference
of such technology to the measurement error setting achieves reasonable accuracy while being hundreds of times faster
than MCMC. MFVB approximations to nonparametric regression problems with measurement error in the predictors are
challenging due to spline basis functions entering the approximate posterior densities of the unobserved predictor. A
streamlined discretization of these approximate posterior densities on a grid across the domain of the predictor is utilized
to achieve computational efficiency.

In tandem with the methodological development a customized MCMC is developed to facilitate the evaluation of
accuracy of the MFVB method. Both MCMC and MFVB are straightforward for all components of a nonparametric
regression measurement error model, with the exception of the unobserved predictors. Approximate sampling from the
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full conditionals for the unobserved predictors can be performed efficiently using griddy-Gibbs sampling steps (Ritter and
Tanner, 1992). Note that our MCMC and MFVB methods use an analogous approximation to the posterior distributions of
the unobserved predictors.

After a brief introduction to MFVB methods (Section 2) we will develop these methods from the simplest case, simple
linear regression (Section 3), and then extend these ideas to the more complex case of nonparametric regression with
measurement error (Section 4) which could lay the foundation for more elaborate models such as additive models (see
for example, Richardson and Green (2002) and Ganguli et al. (2005)). The methodology will be illustrated using a mix of
simulated and real world examples (Section 5) and conclusions will be drawn (Section 6).

1.1. Notation

Throughout this paper i.i.d. is an abbreviation for independent and identically distributed. The notation x ∼ N(µ, Σ)means
that x has a Multivariate Normal density with mean µ and covariance Σ. x has an Inverse Gamma distribution, denoted by
x ∼ IG(A, B), if and only if it has density p(x) = BAΓ (A)−1x−A−1 exp(−B/x), x, A, B > 0.

2. Elements of mean field variational Bayes

Let D be a vector of observed data, and θ be a parameter vector with joint distribution p(D, θ). In the Bayesian inferential
paradigm decisions are made based on the posterior distribution p(θ|D) ≡ p(D, θ)/p(D) where p(D) ≡


p(D, θ)dθ.

Let {θ1, . . . , θM} be a partition of the parameter vector θ. Then mean field variational Bayes approximates p(θ|D) by
q(θ) =

M
j=1 q(θj). It can be shown (see for example, Bishop (2006) and Ormerod and Wand (2010)) that the q(θj)s, often

called q-densities, which minimize the Kullback–Leibler distance between q(θ) and p(θ|D) defined by

KL(q, p) =


q(θ) log


q(θ)
p(θ|D)


dθ (1)

are given by

q∗(θj) ∝ exp

E−q(θj)


p(θj|rest)


, 1 ≤ j ≤ M, (2)

where E−q(θj) denotes expectation with respect to


k≠j q(θk). Note that only when (2) holds for each q∗(θj), 1 ≤ j ≤ M , is
optimality obtained. Furthermore, a lower bound on the marginal log-likelihood is given by

log p(D) ≥ log p(D; q) =


q(θ) log

p(D, θ)

q(θ)


dθ. (3)

It can be shown that the calculation of q∗(θj) in (2) for fixed {q∗(θk)}k≠j guarantees a monotonic increase in the lower bound
(3) or equivalently a monotonic decrease in the Kullback–Leibler distance (1). Thus, an at least locally optimal {q(θj)}1≤j≤M
can be found by updating the q∗(θj) in (2) sequentially until the lower bound (3) is judged to cease increasing.

To avoid notational clutter for a generic random variable v and density function q(v) let

µq(v) ≡ Eq(v) and σ 2
v ≡ Varq(v).

Also, in the special case that q(v) is an InverseGammadensity functionwe letAq(v) and Bq(v) be the shape and rate parameters
of q(v) respectively, i.e. v ∼ IG(Aq(v), Bq(v)). Note µq(1/v) = Aq(v)/Bq(v). For a generic random vector v and density function
q(v) let

µq(v) ≡ Eq(v) and Σq(v) ≡ Covq(v) = covariance matrix of v under density q(v).

3. Simple linear regression with measurement error

We start with the simplest example of ameasurement errormodel, where wewant to perform a simple linear regression
and the predictor is observed with error. Let

yi = β0 + β1xi + εi, 1 ≤ i ≤ n, (4)

where εi are i.i.d. N(0, σ 2
ε ). Here the responses, the yis, are observed, but instead of observing xi ∼ N(µx, σ

2
x ) we observe a

corrupted version of xi, wi such that wi = xi + vi, where vi are i.i.d. N(0, σ 2
v ) random variables with σ 2

v known.
For convenience we use independent priors with

β0, β1
ind.
∼ N(0, σβ

2), µx ∼ N(0, σ 2
µx

), σ 2
x ∼ IG(Ax, Bx), σ 2

ε ∼ IG(Aε, Bε),

where σ 2
β , Aε, Bε, Ax, Bx and σ 2

µx
are positive hyperparameters.
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