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a b s t r a c t

Kernel ridge regression is a technique to perform ridge regression with a potentially infi-
nite number of nonlinear transformations of the independent variables as regressors. This
method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable
in many different contexts. The influence of the choice of kernel and the setting of tuning
parameters on forecast accuracy is investigated. Several popular kernels are reviewed, in-
cluding polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels
are interpreted in terms of their smoothing properties, and the tuning parameters associ-
ated to all these kernels are related to smoothness measures of the prediction function
and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for
selecting the tuning parameters from small grids using cross-validation. A Monte Carlo
study confirms the practical usefulness of these rules of thumb. Finally, the flexible and
smooth functional forms provided by the Gaussian and Sinc kernels make them widely
applicable. Therefore, their use is recommended instead of the popular polynomial kernels
in general settings, where no information on the data-generating process is available.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many areas of application, forecasters face a trade-off between model complexity and forecast accuracy. Due to the
uncertainty associatedwithmodel choice and parameter estimation, a complex nonlinear predictivemodel is often found to
produce less accurate forecasts than a simpler, e.g. linear, model. Thus, a forecaster wishing to estimate a nonlinear relation
generally restricts the search space drastically, for example to polynomials of low degree, or to regime-switching models
(Teräsvirta, 2006) or neural networks (White, 2006; Castillo et al., 2008). A recent comprehensive overview was given by
Kock and Teräsvirta (2011). The improvement of such models upon the predictive accuracy of linear models is often found
to be limited; see for example Stock andWatson (1999), Teräsvirta et al. (2005), andMedeiros et al. (2006). Moreover, these
techniques tend not to be very suitable for large numbers of predictors.

Another manifestation of this complexity–accuracy trade-off is that, while a very large number of potentially relevant
predictors may be available, the curse of dimensionality implies that better forecasts can be obtained if a large proportion
of the predictors is discarded. This situation arises, for example, in economic applications. Hundreds of predictors are often
available, and economic theory does not usually provide guidelines concerning which variables should or should not be
included in a model. A reduction in the number of predictors can be achieved by selecting a small subset of representative
variables, using techniques such as the Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), or sparse canonical correlation
analysis (An et al., 2013). However, it may be undesirable to leave many potential predictors out of the model completely.
Another popular way to proceed is to summarize the predictors by a small number of principal components. This approach
has found successful forecasting applications inmacroeconomics (e.g. Stock andWatson, 2002) and in finance (e.g. Ludvigson
and Ng, 2007, 2009).
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These techniques estimate either nonlinear models with few predictors, or linear models with many predictors. This
paper discusses kernel ridge regression, a forecasting technique that overcomes both problems simultaneously, making it
suitable for estimating nonlinear models with many predictors. While kernel methods are not widely known in the fields
of economics and finance, they have found ample applications in machine learning; a review can be found in Hofmann
et al. (2008). Typical applications are in classification rather than regression, such as the optical recognition of handwritten
characters (Schölkopf et al., 1998). Recently, Exterkate et al. (2013) use this technique in a macroeconomic forecasting
application and they report an increase in forecast accuracy, compared to traditional methods.

The central idea in kernel ridge regression is to employ a flexible set of nonlinear prediction functions and to prevent
overfitting by penalization. This is done by mapping the set of predictors into a high-dimensional (or even infinite-
dimensional) space of nonlinear functions of the predictors. A linear forecast equation is then estimated in this high-
dimensional space, using a penalty (or shrinkage, or ridge) term to avoid overfitting. Computational tractability is achieved
by choosing the mapping in a convenient way, so that calculations in the high-dimensional space are actually prevented.

Kernel ridge regression provides a large amount of flexibility in model building, but it also leaves the researcher with a
number of nontrivial decisions tomake. One such decision concernswhich kernel to use. Although any choice of kernel leads
to restrictions on the functional form of the forecast equation, little attention is generally being paid to such implications.
Additionally, kernel ridge regression involves tuning parameters, and their practical interpretation is not always clear. This
feature makes it difficult to select ‘‘reasonable’’ values for these parameters, resulting in time-consuming grid searches or
in suboptimal forecasting performance.

To give a clear interpretation of the kernel functions and their associated tuning parameters, we review the kernel
methodology from two different points of view, namely, function approximation and Bayesian statistics. This combination
of perspectives enables us to relate one of the two tuning parameters that are found in most applications of kernel ridge
regression to the signal-to-noise ratio in the data, and the other to the smoothness of the prediction function.Wegive explicit
rules of thumb for selecting their values by using cross-validation over small grids. Cross-validation may also be used to
select among different types of kernel. However, we provide empirical evidence against including the popular polynomial
kernels in the cross-validation exercise.

In Section 2 we describe the kernel methodology, from the perspective of function approximation and from Bayesian
statistics. We discuss several popular kernels and the functional forms of their associated forecast equations, and we
interpret their tuning parameters. Section 3 presents a Monte Carlo simulation to show the effects of different methods for
choosing the kernel and its tuning parameters. Selecting the tuning parameters using cross-validation affects the forecast
quality only marginally, compared to using the true values. The kernel can also be chosen by cross-validation; however,
using a polynomial kernel when the data-generating process is non-polynomial has a substantial impact on the forecast
accuracy. We also present simulations in which all kernels estimate misspecified models, and the ‘‘smooth’’ Gaussian and
Sinc kernels perform best in this case. We provide conclusions in Section 4.

2. Methodology

Kernel ridge regression can be understood as a function approximation tool, but it can also be given a Bayesian
interpretation. We review the method from both viewpoints in Sections 2.1 and 2.2, respectively. We present some popular
kernel functions in Section 2.3. In Section 2.4 we give an interpretation to the associated tuning parameters, and we derive
‘‘reasonable’’ values for these parameters.

2.1. Kernel ridge regression for function approximation

We first introduce some notation. We have T observations (y1, x1) , (y2, x2) , . . . , (yT , xT ), with yt ∈ R and xt ∈ RN , and
our goal is to find a function f so that f (xt) is a ‘‘good’’ approximation to yt for all t = 1, 2, . . . , T . Then, a new observation
x∗ ∈ RN is observed and we wish to predict the corresponding y∗. We denote this prediction by ŷ∗ = f (x∗). By selecting f
from a large and flexible class of functions while preventing overfitting, we hope to achieve that this prediction is accurate.

To describe the class of functions from which we select f , we first choose a mapping ϕ : RN
→ RM . The regression

function f will be restricted to a certain set of linear combinations of the form ϕ (x)′ γ , with coefficient vector γ ∈ RM .
The number of regressors M is either a finite integer with M ≥ N , or M = N, representing a countably infinite number of
regressors. Examples of mappings of both types are presented in Section 2.3.

If a flexible functional form is desired, the number of regressors M needs to be large. Therefore we wish to avoid
M-dimensional computations, and it turns out that we can do so by requiring only that the inner product κ (xs, xt) =

ϕ (xs)′ ϕ (xt) can be found using only N-dimensional computations, for any xs, xt ∈ RN . In the machine learning literature
this idea is known as the kernel trick (Boser et al., 1992), and the function κ : RN

× RN
→ R is commonly called the

kernel function. Conversely, functions κ for which a corresponding ϕ exists can be characterized by a set of conditions due
to Mercer (1909). All kernel functions discussed in this study satisfy these conditions; a thorough justification can be found
in Hofmann et al. (2008).

Finally, define a space of functions H0 consisting of the functions f : RN
→ R of the form f (x) =

S
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