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a b s t r a c t

The estimation and empirical likelihood for single-index models with missing covariates
are studied. A generalized estimating equations estimator for index coefficients with
missing covariates is constructed, and its asymptotic distribution is obtained. The local
linear estimator for link function achieves optimal convergence rate. By using the bias-
correction and inverse selection probability weighted methods, a class of empirical
likelihood ratios is proposed such that each of our class of ratios is asymptotically chi-
squared. A simulation study indicates that the proposed methods are comparable in terms
of coverage probabilities and average lengths (areas) of confidence intervals (regions). An
example of a real data set is illustrated.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the single-index model

Y = g(βTX)+ ε, (1.1)

where Y is a scalar random variable, X ∈ Rp is a covariate, β ∈ Rp is an unknown index coefficients, g(·) is an unknown
link function, ε is a random error with E(ε|X) = 0 almost surely. For identifiability purposes (Lin and Kulasekera, 2007),
we typically assume ∥β∥ = 1, with its first non-zero element being positive, where ∥ · ∥ denotes the Euclidean norm. For
this model, we focus on the case where X value in a sample of size n may be missing and Y is observed completely. That is,
we obtain a sample of incomplete observations {(Xi, Yi, δi), 1 ≤ i ≤ n} from (X, Y , δ), where all the Yi’s are observed, and
δi = 0 if Xi are missing and δi = 1 otherwise.

The single-index model is one of the most popular semiparametric models in applied quantitative sciences. This model
search for a single linear combination of p-covariate X that can capture most information about the relation between
response variable Y and covariate X , thereby avoiding the curse of dimensionality. Many authors have investigated the
estimation of the index coefficients β with focus on

√
n-estimability and efficiency issues. The proposed methods have the

average derivative method (Stoker, 1986; Powell et al., 1989), the sliced inverse regression method (Duan and Li, 1991; Li,
1991), the least squares method (Härdle et al., 1993), the minimum average conditional variance method (Xia et al., 2002),
and the estimating function method (Cui et al., 2011). Wang et al. (2010) studied the estimation of parameters of interest
for the single-index model with missing response at random. Xue and Zhu (2006) studied the single-index models by the
empirical likelihood method. They proposed the estimated and adjusted empirical log-likelihood ratios to construct the
confidence region of the regression parameter. The empirical likelihood method has many advantages, for example, it does
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not impose prior constraints on the shape of the region, it does not require the construction of a pivotal quantity and it does
not involve a plug-in estimator for the asymptotic variance. For these reasons, this method has found many applications
such as in parametric models, nonparametric models and semiparametric models. The relevant papers are, among others,
Owen (1988, 1990, 2001), Wang and Rao (2002a,b), Chen and Qin (1993), Chen and Hall (1993), Kolaczyk (1994), Qin and
Lawless (1994), Wang et al. (2004), Qin and Zhang (2007), Stute et al. (2007), Zhu and Xue (2006), Xue and Zhu (2007a,b),
Xue (2009a,b, 2010), Wang and Xue (2011), Xue and Xue (2011).

In this paper, we are interested in estimating β and the unknown function g(u) as well as constructing confidence region
of β in model (1.1) when the covariate X has missing data. A bias-correction method and an inverse selection probability
weightedmethod are used to develop somemethods for constructing the estimator and confidence region ofβ .We construct
a class of estimators for β and g(u). It is shown that the estimator of β is asymptotically normal and the estimator of g(u)
has optimal convergence rate. A class of empirical log-likelihood ratios for β is constructed. It is shown that each of these
ratios is asymptotically chi-squared. We also provide consistent estimators of asymptotic variance. Our results can be used
directly to construct the confidence intervals and region of β . The proposed method has the following features: by using
the centred covariates and the inverse selection probability weighted imputation for missing X , the resulting empirical log-
likelihood ratio has asymptotically chi-squared distribution; this achieves the bias-correction for the empirical likelihood
ratio, undersmoothing for estimating nonparametric functions are avoided, and the existing data-driven algorithm can be
used to select an optimal bandwidth.

The construction of this paper is as follows. Section 2 gives a methodology for constructing the estimator and the
empirical likelihood ratio for β , and gives some results. Section 3 reports the results of a simulation study and an application.
Section 4 is the concluding remark. Proofs of theorems are relegated to Appendix.

2. Methodology and main results

2.1. Weighted estimating equations

Throughout this paper, we assume that X is missing at random (MAR). The MAR assumption implies that δ and X is
conditionally independent given Y , that is,

P(δ = 1|X, Y ) = P(δ = 1|Y ) ≡ π(Y ), (2.1)

where π(Y ) is termed the selection probability function.
In a general case, the selection probability functionπ(y) is unknown. To construct the estimator and empirical likelihood

ratio for β , we need to estimate π(y) by using kernel method. Assume that {(Xi, Yi, δi), 1 ≤ i ≤ n} is an independent and
identically distributed (i.i.d.) sample from model (1.1). For a given bandwidth h1 = h1(n) with 0 < h1 → 0 and a kernel
function K ∗(y) in R, the estimator of π(y) is defined as

π̂(y) =

n
i=1

K ∗


Yi − y
h1


δi

 n
j=1

K ∗


Yj − y
h1


. (2.2)

For given β , we can construct the estimators for g(u) and its derivative g ′(u) by using the local linear fitting method
proposed by Fan and Gijbels (1996). Let K(·) be a kernel function on the real set R, and h2 = h2(n) is a bandwidth sequence
tending to 0 with h2 > 0. Then, the estimators of g(u) and g ′(u) are defined as

ĝ(u;β) =

n
i=1

Wni(u;β)Yi (2.3)

and

ĝ ′(u;β) =

n
i=1

Wni(u;β)Yi, (2.4)

where

Wni(u;β) =
n−1

{δi/π̂(Yi)}Kh2(X
T
i β − u){Sn,2(u;β)− (XT

i β − u)Sn,1(u;β)}
Sn,0(u;β)Sn,2(u;β)− S2n,1(u;β)

,

Wni(u;β) =
n−1

{δi/π̂(Yi)}Kh2(X
T
i β − u){(XT

i β − u)Sn,0(u;β)− Sn,1(u;β)}
Sn,0(u;β)Sn,2(u;β)− S2n,1(u;β)

,

Sn,l(u;β) =
1
n

n
i=1

δi

π̂(Yi)
(XT

i β − u)lKh2(X
T
i β − u), l = 0, 1, 2

and Kh2(·) = h−1
2 K(·/h2).
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