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a b s t r a c t

The goal of network clustering algorithms is to assign each node in a network to one of sev-
eralmutually exclusive groups based upon the observed edge set. Of the network clustering
algorithms widely available, most make the effort to maximize the modularity metric. Al-
though modularity is an intuitive and effective means to cluster networks, it provides no
direct basis for quantifying the statistical significance of the detected clusters. In this paper,
we consider undirected networks and propose a new objective function to maximize over
the space of possible group membership assignments. This new objective function lends
naturally to the use of information criterion (e.g., Akaike or Bayesian) for determining the
‘‘best’’ number of groups, as well as to the development of a likelihood ratio test for deter-
mining if the clusters detected provide significant new information. The proposed method
is demonstrated using two real-world networks. Additionally, using Monte Carlo simula-
tion, we compare the performances of the proposed clustering framework relative to that
achieved by maximizing the modularity objective when applied to LFR benchmark graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Clustering has awide array of applications, from pattern recognition and spatial data analysis to datamining andmilitary
intelligence. Regardless of the application, clustering methodologies are often used to explore a data set where the goal is
to partition the sample into distinct groups, or to provide new understanding about the underlying structure of the data.

Different approaches have been developed to address the problem of clustering. A popular approach, known as hierarchi-
cal clustering, seeks to identify nested clusters in a data set (see Gordon (1987)). Either agglomerative or divisive, hierarchical
clustering algorithms either combine or separate observational units in order to produce the clusters. The output of such an
algorithm is the dendrogram, where the user is left to determine the appropriate number of clusters for the particular data
set.

Another approach is k-means clustering. Using this approach, the user specifies the number of groups a priori and then
randomly assigns each observational unit to one of those groups. The centroid of each of the groups is calculated, and each
observational unit is reassigned to the nearest cluster. The centroids of these new groups are then recalculated and the ob-
servational units are again reassigned to the closest group. The process continues until groupmembership stabilizes. A good
review of k-means clustering is given by Steinley (2006).

Unlike the previous methods, spectral clustering does not require the user to specify the number of groups a priori. This
approach requires the calculation of a matrix to describe the similarity between each pair of observational units, i.e., the
similaritymatrix. The eigenvectors and eigenvalues of thismatrix (i.e., the spectrum) are then calculated and used to identify
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group membership, e.g., one might bipartition the sample based on the sign of the elements of the eigenvector associated
with the largest eigenvalue. The interested reader is directed to von Luxburg (2007) for a straightforward review of the
technique.

Although clustering algorithms are often applied to conventional data sets, they can also be applied to network data
(e.g., social networks, biological networks, computer networks, etc.). In such a case, the goal is typically to assign each node
in the network to one of several mutually exclusive groups based upon information contained in the edge set. In general, a
network can be defined as a graph G = (V , E) with vertex set V and edge set E, where each edge eii′ ∈ E denotes a connec-
tion (or relationship) between node vi ∈ V and node vi′ ∈ V (for i = 1, . . . , n, i′ = 1, . . . , n, where i ≠ i′). Networks can be
characterized based on the types of edges that exist between nodes. An undirected network is a network in which eii′ = ei′i,
i.e., a relationship from node i to node i′ implies an equal relationship from node i′ to node i. In contrast, a directed network
does not have this restriction. The values taken by the elements of E further characterize a network. In a binary network,
the edges may take only the binary values 0 and 1, indicating the absence or presence of a link, respectively. Conversely,
weighted networks allow the edges to take continuous values, although these values are often restricted to be non-negative.

Themost popular approach to network clustering is tomaximize themodularity metric, originally proposed by Newman
(2004). Network clustering viamodularity is available in a number of network analysis software packages and thus is widely
available to network analysts. To define modularity, consider a network of size n, and let ωij = 1 if node i belongs to group
j, and 0 otherwise (i = 1, . . . , n and j = 1, . . . , k). Further, let Aii′ denote the (ii′)th element of the adjacency matrix A, m
denote the total number of edges in the network, and di the degree of node i. For a given n× k group membership matrix ω
and n × n adjacency matrix A, the modularity is defined as

Q (ω|A) =
1
2m

tr(ωTBω) (1)

where tr(G) denotes the trace of the matrix G and

Bii′ = Aii′ −
didi′
2m

(2)

denotes the elements of the so calledmodularity matrix.
Modularity is a useful, intuitive, and effective statistic for measuring the extent to which a given partition of a network is

modular. Specifically, it measures the fraction of edges that fall within the given groups minus the expected such fraction if
edgeswere distributed at random. Larger values ofmodularity suggest the presence of densely intra-connected and sparsely
inter-connected nodes. The clustering problem involves findingω∗, i.e., the groupmembership matrix in the set of all group
membership matrices �k that yields the maximummodularity value, or

ω∗
= arg max

ω∈�k

[Q (ω|A)] . (3)

In general, the optimization problem given above is not an easy one. In particular, for even moderately-sized networks,
the number of possible ways to partition the vertex set is quite vast, rendering an exhaustive search infeasible. As such,
heuristic search algorithms are often employed by which the number of possible network partitions evaluated is greatly
reduced. In what followswe discuss some of thesemethods. Althoughmaximizingmodularity is by far themost popular ob-
jective, themethods discussed below are not exclusive tomodularity. For amore comprehensive review of the large number
of algorithms available for performing community detection in graphs, the interested reader is referred to Fortunato (2010).

The fastestmethod in commonusewasdevelopedbyClauset et al. (2004). Theirwork is amodification ofNewman (2004),
where although they do not alter the general approach of Newman’s algorithm, they do optimize its memory usage, data
storage, and computational methods for use with sparse networks; i.e., a vast majority of networks of interest. Newman’s
algorithm is a greedy, agglomerative, hierarchical clustering algorithm that seeks to maximize modularity at each step. The
algorithm begins by assuming that each node represents an individual module, then merges the modules that lead to the
greatest increase in modularity.

Others have employed stochastic search methods such as simulated annealing or genetic algorithms (Guimerà et al.,
2004; Kü cükpetek et al., 2005). These methods are generally found to be slower but more accurate than other determin-
istic methods. In fact, Danon et al. (2005) found that simulated annealing produced the most accurate results of any of the
algorithms that were tested.

Another approach involves examining the spectral properties of various matrices. Newman (2006), for example, denotes
the assignment of nodes into two groups in terms of an n × 1 vector s in which node i’s membership in subgroup 1 (2) is
denoted by si = 1 (−1). By choosing the assignment of groupmembership in such away as tomaximize the inner product of
s and the eigenvector associatedwith the largest eigenvalue of a function of the adjacencymatrix, an approximately optimal
partition can be determined. Each of these two subgroups can then be divided using a similar procedure.

Still another approach uses extremal optimization (Duch and Arenas, 2005), which focuses on correcting those nodes
with the worst fit. Kernigan and Lin (1970) proposed a similar but more simplistic approach in which the graph is divided
into equal parts. Also, there exists a class of search procedures that work by cutting the links between particular nodes or by
otherwise physically dividing the global network into smaller pieces, Girvan and Newman (2002) and Newman and Girvan



Download English Version:

https://daneshyari.com/en/article/6870758

Download Persian Version:

https://daneshyari.com/article/6870758

Daneshyari.com

https://daneshyari.com/en/article/6870758
https://daneshyari.com/article/6870758
https://daneshyari.com

