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a b s t r a c t

We extend generalized partially linear single-index models by incorporating a random
residual effect into the nonlinear predictor so that the newmodels can accommodate data
with overdispersion. Based on the free-knot spline techniques, we develop a fully Bayesian
method to analyze the proposedmodels. Tomake themodels spatially adaptive, we further
treat the number and positions of spline knots as random variables. As random residual
effects are introduced, many of the completely conditional posteriors become standard
distributions, which greatly facilitates sampling. We illustrate the proposed models and
estimation method with a simulation study and an analysis of a recreational trip data
set.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let Y = (y1, . . . , yn)T be a vector of the independent random observations, where yi follows an exponential family
distribution with density

f (yi|ηi, φ) = exp

φ−1 [yiζi − b(ζi)] + c(yi, φ)


, i = 1, . . . , n, (1)

where φ is a scalar parameter, and b(·) and c(·) are two specified functions. Generalized linear models (GLMs) (McCullagh
and Nelder, 1989), including linear regression models, probit regression models, Poisson regression models, among others,
relate the natural parameter ζi to a linear combination of predictor vectors xi = (xi1, . . . , xip)T and zi = (zi1, . . . , ziq)T
by

h−1(ζi) = ηi = xTi α + zTi β, i = 1, . . . , n, (2)

where h(·) is a known monotone univariate function that is called the link function, and α = (α1, . . . , αp)
T and β =

(β1, . . . , βq)
T are unknown parameter vectors.

GLMs provide a unified family of models in regression analysis. However, the assumption that the effects of all the
explanatory variables in (2) are linear is often questionable in practice. Relaxing this assumption leads to generalized non-
/semi-parametric models, such as generalized additive models (Hastie and Tibshirani, 1990), generalized partially linear
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single-index models (GPLSIMs) (Carroll et al., 1997), and so on. Specifically, the GPLSIM is given by

h−1(ζi) = ηi = g(xTi α) + zTi β, i = 1, . . . , n, (3)

where g(·) is an unknown univariate function.
We consider a generalization of GPLSIM with random residual effect. The new model is defined jointly by (1) and

h−1(ζi) = ηi = g(xTi α) + zTi β + εi, i = 1, . . . , n, (4)

where εi’s are independent and identically distributed normal random variables with mean 0 and variance σ 2. Note that
unlike ηi in (3), which is a function of observable explanatory variables, ηi in (4) is a latent random variable. To ensure
identifiability, we assume as usual that the index vector is such that ∥α∥ = 1 with α1 > 0, where ∥·∥ is the Euclidean norm.

The use of random residual effect εi in (4), similar to that in GLMs with random effects (Zeger and Karim, 1991; Breslow
and Clayton, 1993; Clayton, 1996; Sun et al., 2000), enables the modeling of unexplained sources of variation in the data,
such as explanatory variables that are not recorded and/or the overdispersion that is often encountered in binomial and
Poisson data. Another advantage of using a residual component lies in statistical computation, where conditional on latent
variables η = (η1, . . . , ηn)

T , model (4) is independent of Y and becomes a partially linear single-index model. This makes
it easier to draw inferences about the model parameters by means of a data augmentation algorithm (Tanner and Wong,
1987).

As important dimension-reduction tools in multivariate nonparametric regression, single-index-type models have been
substantially discussed in the literature: see, for instance, Stoker (1986), Härdle and Stoker (1989), Li (1991), Härdle et al.
(1993), Ichimura (1993), Horowitz and Härdle (1996), Carroll et al. (1997), Xia et al. (1999, 2002), Naik and Tsai (2001),
Yu and Ruppert (2002) and Kong and Xia (2007) for classical statistical methods, and Antoniadis et al. (2004), Park et al.
(2005), Wang (2009), Choi et al. (2011), and Gramacy and Lian (2012) for Bayesian methods. The main drawback of classical
methods is that unstable estimates are often obtained in small samples. Although Bayesian methods can produce more
reliable estimates, the existing work has been limited to the continuous response case and, to the best of our knowledge,
discrete response data have not been discussed.

Free-knot spline approximation is one of themostwidely used approaches to nonparametric curve estimation, especially
in the Bayesian setting (Smith and Kohn, 1996; Denison et al., 1998; Biller, 2000; Dimatteo et al., 2001; Holmes andMallick,
2001, 2003; Lindstrom, 2002). An appealing feature of free-knot splines is that treating the number and the positions of
spline knots as random variables can make the models spatially adaptive in a sense that a variable bandwidth or smoothing
parameter is automatically determined (Holmes andMallick, 2001, 2003). This approach is used to analyze themodel in (4).

Assume that the unknown curve g(·) is an m-order polynomial spline with k ordered interior knots ξ = (ξ1, . . . , ξk)
T ,

i.e.,

g(u) =

K
j=1

Bj(u)γj = BT (u)γ , u ∈ [a, b], (5)

where K = 1+m+k, a and b are two boundary knots, B(u) = (B1(u), . . . , BK (u))T is a spline basis vector that is determined
by knot ξ , and γ = (γ1, . . . , γK )T is a spline coefficient vector. Eq. (4) can then be represented as

ηi = BT (xTi α)γ + zTi β + εi = BT
i (α)θ + εi, i = 1, . . . , n, (6)

whereBT
i (α) = (BT (xTi α), zTi )T and θ = (γ T , βT )T . In general, the boundary knots a and b take theminimumandmaximum

values of

xTi α, i = 1, . . . , n


, respectively. We denote

aα = min
16i6n


xTi α


and bα = max

16i6n


xTi α


(7)

to emphasize their dependence on the index α. Clearly, given η, α and B(u), (6) is an ordinary linear regressionmodel, which
allows us to adopt a conjugate normal-inverse gamma prior for regression coefficient θ and error variance σ 2. An advantage
of the conjugate prior is that by integrating θ and σ 2 out of the joint posteriorwe can obtain amarginal posterior that greatly
reduces the dimensionality of the parameter space and thus produces a faster algorithm for estimating the index vector and
finding the number and locations of knots.

We propose a fully Bayesian method to analyze GPLSIMs with random residual effects. Section 2 completes the Bayesian
framework by specifying the priors on all of the unknown parameters. Section 3 develops a hybrid Gibbs sampler to generate
samples from the joint posterior. To speed up the convergence to the target distribution, we treat the marginal posterior
of the index vector and the number and positions of knots, which is obtained by integrating over the regression coefficient
and the error variance, as a target distribution. Section 4 illustrates the proposed method using simulated and real data
examples. Section 5 concludes the paper with a summary.



Download	English	Version:

https://daneshyari.com/en/article/6870770

Download	Persian	Version:

https://daneshyari.com/article/6870770

Daneshyari.com

https://daneshyari.com/en/article/6870770
https://daneshyari.com/article/6870770
https://daneshyari.com/

